

London Borough of Lewisham Air Quality Annual Status Report for 2015 Date of publication: August 2016

This report provides a detailed overview of air quality in *London Borough of Lewisham* during 2015. It has been produced to meet the requirements of the London Local Air Quality Management statutory process¹.

Contact details

Christopher Howard, Environmental Health Department environmentalprotection@lewisham.gov.uk

¹ LLAQM Policy and Technical Guidance 2016 (LLAQM.TG(16)). https://www.london.gov.uk/what-we-do/environment/pollution-and-air-quality/working-boroughs

CONTENTS

Abbrevia	itions	.3
1. Air	Quality Monitoring	.5
1.1	Locations	.5
1.2	Comparison of Monitoring Results with AQOs	.8
2. Acti	on to Improve Air Quality	17
2.1	Air Quality Action Plan Progress	19
3. Plar	nning Update and Other New Sources of Emissions	27
3.1	New or significantly changed industrial or other sources	27
Appendi	x A Details of Monitoring Site QA/QC	28
A.1	Automatic Monitoring Sites	28
A.2	Diffusion Tube Quality Assurance / Quality Control	28
A.3	Adjustments to the Ratified Monitoring Data	30
A.4	Annual Mean NO ₂ concentration Trend Analysis	30
Appendi	x B Full Monthly Diffusion Tube Results for 2015	34

Tables

Table A.	Summary of National Air Quality Standards and Objectives	4
Table B.	Details of Automatic Monitoring Sites for 2015	5
Table C.	Details of Non-Automatic Monitoring Sites for 2015	6
Table D.	Annual Mean NO $_2$ Ratified and Bias-adjusted Monitoring Results (µg m $^{-3}$)	8
Table E.	NO_2 Automatic Monitor Results: Comparison with 1-hour Mean Objective	12
Table G.	PM_{10} Automatic Monitor Results: Comparison with 24-Hour Mean Objective	14
Table H.	Annual Mean PM _{2.5} Automatic Monitoring Results ($\mu g \ m^{-3}$)	15
Table I.	SO ₂ Automatic Monitor Results for 2015: Comparison with Objectives	16
Table J.	Commitment to Cleaner Air Borough Criteria	17
Table K.	Delivery of Air Quality Action Plan Measures	20
Table N.	NO_2 Diffusion Tube Results	34

Abbreviations

AQAP	Air Quality Action Plan
AQMA	Air Quality Management Area
AQO	Air Quality Objective
BEB	Buildings Emission Benchmark
CAB	Cleaner Air Borough
CAZ	Central Activity Zone
EV	Electric Vehicle
GLA	Greater London Authority
LAEI	London Atmospheric Emissions Inventory
LAQM	Local Air Quality Management
LLAQM	London Local Air Quality Management
NRMM	Non-Road Mobile Machinery
PM ₁₀	Particulate matter less than 10 micron in diameter
PM _{2.5}	Particulate matter less than 2.5 micron in diameter
TEB	Transport Emissions Benchmark
TfL	Transport for London

Pollutant	Objective (UK)	Averaging Period	Date ¹
Nitrogen dioxide - NO ₂	200 μg m ⁻³ not to be exceeded more than 18 times a year	1-hour mean	31 Dec 2005
	40 μg m ⁻³	Annual mean	31 Dec 2005
Particles - PM ₁₀	50 μ g m ⁻³ not to be exceeded more than 35 times a year	24-hour mean	31 Dec 2004
	40 μg m ⁻³	Annual mean	31 Dec 2004
Particles - PM _{2.5}	25 μg m ⁻³	Annual mean	2020
	Target of 15% reduction in concentration at urban background locations	3 year mean	Between 2010 and 2020
Sulphur Dioxide (SO ₂)	266 μg m ⁻³ not to be exceeded more than 35 times a year	15 minute mean	31 Dec 2005
	350 μg m ⁻³ not to be exceeded more than 24 times a year	1 hour mean	31 Dec 2004
	125 μ g m ⁻³ mot to be exceeded more than 3 times a year	24 hour mean	31 Dec 2004

Table A. Summary of National Air Quality Standards and Objectives

Note: ¹by which to be achieved by and maintained thereafter

Air Quality Monitoring 1.

Locations 1.1

London Borough (LB) of Lewisham currently monitors air quality at 3 continuous monitoring stations. A fourth monitoring station (LW3) was operational until the end of 2015 when it was decommissioned. The details of the monitoring stations are given below in Table B.

Monitoring of NO₂ with diffusion tubes is carried out at 32 sites, including one triplicate site co-located with the LW2 continuous monitor. Diffusion tube L27 was relocated from Lawn Terrace to a more representative location on Montpelier Vale at the start of 2015. Details of the diffusion tube sites are given in Table C.

Pollutants

monitored

Monitoring

technique

Site Name Site X (m) Y (m) Site Type Distance from Distance to kerb of Inlet In ID monitoring site AQMA? nearest road (N/A height

Table B. **Details of Automatic Monitoring Sites for 2015**

						to relevant exposure (m)	if not applicable) (m)	(m)		
LW1	Lewisham1 (Catford)	537675	173689	Urban background	Y-AQMA3	n/a	3m	3.0m	NO ₂ SO ₂ O ₃	Chemiluminescence UV fluorescence UV photometer
LW2	Lewisham 2 (New Cross)	536241	176932	Roadside	Y-AQMA3	0	6m	2.5m	NO ₂ SO ₂ PM ₁₀ PM _{2.5}	Chemiluminescence UV fluorescence TEOM-FDMS TEOM-FDMS
LW3	Lewisham 3 (Mercury Way)	535806	177612	Industrial	Y-AQMA4	n/a	2m	2m	PM ₁₀	BAM
LW4	Lewisham 4 (Loampit Vale)	537912	175838	Roadside	Y-AQMA3	0	7m	2.5m	NO ₂ PM ₁₀	Chemiluminescence TEOM

Site ID	Site Name	X (m)	Y (m)	Site Type	In	Distance from	Distance to kerb	Inlet	Pollutants	Tube co-
					AQMA?	monitoring site	of nearest road	height	monitored	located with
						to relevant	(N/A if not	(m)		an automatic
						exposure	applicable)			monitor?
						(m)	(m)			(Y/N)
L1	Chubworthy St	536109	177580	Roadside	Y	5	2	2.5		N
L2	Bronze St	537540	177439	Urban Background	Y	0	6	2.5	NO ₂	N
L3	Grove St	536561	178471	Urban Background	Y	n/a	2	2.5	NO ₂	Ν
L4	Plough Way	536534	178926	Urban Background	Y	n/a	2	2.5	NO ₂	Ν
L5	Lee High Rd	539678	175050	Roadside	Y	0	5	2.5	NO ₂	Ν
L6	Le May Ave	540615	172337	Urban Background	N	0	5	2.5	NO ₂	N
L7	Bell Green	536556	171810	Roadside	Y	0	3	2.5	NO ₂	Ν
L8	Stondon Park	536229	174032	Roadside	Y	0	5	2.5	NO ₂	N
L9	Ladywell Rd	537500	174925	Roadside	Y	0	3	2.5	NO ₂	N
L10	Whitburn Rd	538062	175085	Roadside	Y	1	1	2.5	NO ₂	N
L11	Sparta St	538007	176517	Roadside	Y	3	3	2.5	NO ₂	N
L12	Montague Avenue, Hilly Fields	537132	175353	Urban Background	Y	n/a	60	2.5	NO ₂	N
L13	Mayow Rd	535804	171567	Urban Background	Ν	0	5	2.5	NO ₂	N
L14	Boyne Rd	538482	175792	Urban Background	Y	3	1	2.5	NO ₂	Ν
L15	Lewisham Rd	538237	176101	Roadside	Y	0	10	2.5	NO2	N
L16	Loampit Vale	537740	175930	Roadside	Y	0	1.5	2.5	NO ₂	N
L17	New Cross Monitoring Station	536246	176934	Roadside	Y	0	6	2.5	NO ₂	Y
L18	New Cross Monitoring Station	536246	176934	Roadside	Y	0	6	2.5	NO ₂	Ŷ

Table C. Details of Non-Automatic Monitoring Sites for 2015

Site ID	Site Name	X (m)	Y (m)	Site Type	In	Distance from	Distance to kerb	Inlet	Pollutants	Tube co-
					AQMA?	monitoring site	of nearest road	height	monitored	located with
						exposure	(N/A if not applicable)	(m)		an automatic monitor?
						(m)	(m)			(Y/N)
L19	New Cross Monitoring Station	536246	176934	Roadside	Y	0	6	2.5	NO ₂	γ
L20	Hatcham Park Rd	535746	176969	Roadside	Y	1	4	2.5	NO ₂	Ν
L21	Brockley Rise	536133	173341	Roadside	Y	0	3	2.5	NO ₂	Ν
L22	Ringstead Rd	538060	173816	Urban Background	Y	3	0.5	2.5	NO ₂	Ν
L23	Catford Hill	537178	173365	Roadside	Y	6	0.5	2.5	NO ₂	Ν
L24	Hazelbank Rd	538930	172713	Urban Background	Ν	4	2	2.5	NO ₂	Ν
L25	Stanstead Rd	535530	173198	Urban Background	Y	0	10	2.5	NO ₂	Ν
L26	Shardloes Rd	536527	175935	Roadside	Y	3	0.5	2.5	NO ₂	Ν
L27	Montpelier Vale*	539604	176090	Roadside	Y	2	0.5	2.5	NO ₂	Ν
L28	Baring Rd	540051	173769	Roadside	Y	5	0.5	2.5	NO ₂	Ν
L29	Holy Cross, Sangley Rd	538165	173406	Roadside	Y	0	5	2.5	NO ₂	Ν
L30	Christchurch, Perry Vale	535535	172679	Roadside	Ν	1	5	2.5	NO ₂	Ν
L31	St Mary Magdalen's RC, Howson Rd	536399	175150	Urban Background	Y	2	2	2.5	NO2	Ν
L32	Grinling Gibbons, Clyde St	536944	177665	Urban Background	Y	0	2	2.5	NO ₂	Ν
L33	St Mary's CE, Lewisham High St	537979	174792	Roadside	Y	0	2	2.5	NO ₂	Ν
L34	Sydenham, Dartmouth Rd	535071	172346	Urban Background	Ν	0	5	2.5	NO ₂	Ν

* Diffusion tube was re-located from Lawn Terrace to Montpelier Vale in 2015

1.2 Comparison of Monitoring Results with AQOs

The results of nitrogen dioxide monitoring carried out by LB of Lewisham are presented in Table D. Data from the 3 automatic monitoring stations have been fully ratified. Data from diffusion tube monitoring sites have been adjusted for bias. Data capture for 2015 for the continuous monitors and all diffusion tube locations was greater than 75% and so it is not necessary to "annualise" any of the results.

Table D. Annual Mean NO₂ Ratified and Bias-adjusted Monitoring Results (µg m⁻³)

					Annual Mean Concentration (µgm ⁻³)								
Site ID	Site type	Valid data capture for monitoring period % ^a	Valid data capture 2015 % ^b	2009 (Bias Adjustment Factor = 0.99)	2010 (Bias Adjustment Factor = 1.03)	2011 (Bias Adjustment Factor = 0.94)	2012 (Bias Adjustment Factor = 1.01)	2013 (Bias Adjustment Factor = 1.00)	2014 (Bias Adjustment Factor = 0.97)	2015 (Bias Adjustment Factor = 1.02)			
LW1 (CM)	Urban Background	82	82	56	55	51	50	48	54	43			
LW2 (CM)	Roadside	93	93	63	59	51	50	51	42	47			
LW4 (CM)	Roadside	84	84	-	-	-	64 ^c	57	56°	51			
L1	Roadside	92	92	-	-	36.4	37.8	38.6	38.0	33.1			
L2	Urban Background	83	83	-	-	29.7	31.0	29.6	29.2	28.1			
L3	Urban Background	100	100	-	-	34.7	37.9	37.1	35.9	34.3			
L4	Urban Background	100	100	-	-	37.2	34.9	37.3	34.9	34.4			
L5	Roadside	100	100	-	-	36.6	39.0	43.3	37.7	33.4			

						Annual Me	an Concentrat	ion (µgm ⁻³)		
Site ID	Site type	Valid data capture for	Valid data	2009 (Bias	2010 (Bias	2011 (Bias	2012 (Bias	2013 (Bias	2014 (Bias	2015 (Bias
Site ib	Site type	monitoring	capture	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment
		period % ^a	2015 % ^b	Factor =	Factor =	Factor =				
				0.99)	1.03)	0.94)	1.01)	1.00)	0.97)	1.02)
L6	Urban Background	83	83	-	-	35.9	37.5	38.3	36.0	35.2
L7	Roadside	100	100	-	-	48.3	53.4	53.8	55.4	48.3
L8	Roadside	100	100	-	-	44.5	44.8	48.6	42.2	42.2
L9	Roadside	100	100	-	-	39.9	40.6	40.5	40.8	37.5
L10	Roadside	92	92	-	-	43.2	44.0	46.2	40.3	39.4
L11	Roadside	92	92	-	-	44.9	40.0	47.4	38.6	36.1
L12	Urban Background	83	83	-	-	30.7	33.7	34.9	30.5	26.9
L13	Urban Background	100	100	-	34.9	29.7	32.3	33.3	28.3	27.3
L14	Urban Background	100	100	35.7	33.3	33.5	34.5	34.7	31.2	29.9
L15	Roadside	100	100	49.2	47.8	43.6	44.3	47.6	46.5	46.6
L16	Roadside	100	100	59.4	<u>61.3</u>	48.7	55.0	58.6	52.5	48.7
L17	Roadside	100	100	<u>72.8</u>	<u>75.2</u>	<u>75.4</u>	59.2	53.7	49.1	50.6
L18	Roadside	100	100	73.1	75.2	75.4	59.2	53.7	51.1	49.1
L19	Roadside	83	83	71.2	<u>75.2</u>	<u>75.4</u>	59.2	53.7	49.6	49.7
L20	Roadside	92	92	-	54.1	42.4	45.4	44.7	43.6	43.2

						Annual Me	an Concentrat	ion (µgm ⁻³)		
Site ID	Site type	Valid data capture for monitoring period % ^a	Valid data capture 2015 % ^b	2009 (Bias Adjustment Factor = 0.99)	2010 (Bias Adjustment Factor = 1.03)	2011 (Bias Adjustment Factor = 0.94)	2012 (Bias Adjustment Factor = 1.01)	2013 (Bias Adjustment Factor = 1.00)	2014 (Bias Adjustment Factor = 0.97)	2015 (Bias Adjustment Factor = 1.02)
L21	Roadside	100	100	56.6	<u>60.9</u>	52.6	54.0	54.0	54.6	50.3
L22	Urban Background	100	100	37.9	33.1	35.4	34.3	33.5	32.2	30.3
L23	Roadside	100	100	57.1	56.1	54.0	56.5	59.9	55.1	51.8
L24	Urban Background	92	92	30.8	33.4	29.0	35.1	36.3	35.6	32.4
L25	Urban Background	100	100	27.1	30.8	28.3	28.3	27.5	25.5	23.3
L26	Roadside	92	92	<u>60.0</u>	53.8	49.7	48.0	51.9	53.7	47.2
L27a*	Roadside	-	-	40.5	38.5	34.6	37.3	37.2	36.2	-
L27b*	Roadside	100	100	-	-	-	-	-	-	57.1
L28	Roadside	100	100	49.1	<u>60.7</u>	51.9	59.3	<u>61.9</u>	51.0	58.6
L29	Roadside	100	100	31.3	35.1	29.9	32.1	33.3	33.0	28.6
L30	Roadside	83	83	31.0	33.0	27.8	31.1	34.3	31.3	32.3
L31	Urban Background	100	100	28.7	30.7	23.2	25.4	29.6	25.7	23.5
L32	Urban Background	92	92	33.0	35.3	29.7	29.6	31.6	30.6	28.6
L33	Roadside	100	100	<u>60.7</u>	54.7	47.1	51.4	51.0	44.6	41.8
L34	Urban Background	100	100	34.3	32.7	27.6	30.4	34.0	31.8	27.0

Notes: Exceedances of the NO₂ annual mean AQO of 40 µgm⁻³ are shown in bold. NO₂ annual means greater than 60 µg m⁻³, indicating a potential exceedance of the NO₂ hourly mean AQS objective are shown in bold and underlined. *L27a refers to previous site location, L27b refers to new site location.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

The 2015 annual mean NO₂ concentrations at the three continuous monitoring stations all exceeded the annual mean NO₂ AQO of 40 μ gm⁻³. The highest concentration was 51 μ gm⁻³ at LW4. Between 2009 and 2015 there has been a downward trend in annual mean NO₂ concentrations at the automatic monitoring stations. At LW1 annual mean NO₂ concentrations have fallen from 56 μ gm⁻³ in 2009 to 43 μ gm⁻³ in 2015. A similar trend is seen in the data from LW2 where annual mean NO₂ concentrations have fallen from 63 μ gm⁻³ in 2009 to 47 μ gm⁻³ in 2015, and LW4 (operational since 2012).

The annual mean NO₂ AQO of 40 µgm⁻³ was exceeded at 12 diffusion tube monitoring locations in 2015. The highest concentration was measured at site L28 (58.6 µgm⁻³). In terms of temporal trends there is considerable variability between the diffusion tube monitoring locations over the 2009 to 2015 period. A number of sites (L1, L4, L6, L9, L15, L20, L21, L29, L30) have shown no significant changes in annual mean NO₂ concentrations between 2009 and 2015, in particular since 2011, and only small variations in concentrations from one year to the next. Sites L22, L26, L33 and the triplicate tubes co-located with the LW2 continuous monitor at New Cross (L17, L18, L19) showed evidence of decreasing NO₂ concentrations from 2009 to 2015. The L27 site recorded one of the highest NO₂ concentrations in 2015, in contrast to the lower concentrations of previous years, but this is due to the site having been re-located to a busy area with worst-case exposure (marked as L27b). The remaining sites show no evidence of increasing or decreasing concentrations over time but the year-to-year variations in NO₂ concentrations are quite pronounced.

Over the last 7 years annual mean NO₂ concentration measured at all urban background sites have remained below the annual mean NO₂ AQO of 40 μ gm⁻³ whereas roadside locations have exceeded the AQO. However, on average, annual mean NO₂ concentrations at roadside and urban background monitoring locations have decreased between 2009 and 2015. The reduction is most apparent for the roadside sites. For the urban background locations annual mean NO₂ concentrations decreased between 2009 and 2011, followed by increases in 2012 and 2013, before decreasing again in 2014 and 2015.

	Valid data	Valid data	Number of Hourly Means > 200 μgm ⁻³									
Site ID	capture for monitoring period % ^a	capture 2015 % ^b	2009	2010	2011	2012	2013	2014	2015			
LW1	82	82	4	1	0	2	3	0	0			
LW2	93	93	6	0	0	0	0	0	7			
LW4	84	84	-	-	-	16 (221) ^c	26	5 (180) ^c	0			

Table E. NO2 Automatic Monitor Results: Comparison with 1-hour Mean Objective

Notes: Exceedance of the NO₂ short term AQO of 200 μ g m⁻³ over the permitted 18 hours per year are shown in **bold**.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

In 2015, no exceedances of the hourly mean NO₂ AQO value (200 μ gm⁻³) were recorded at the LW1 and LW4 automatic monitoring locations. At LW2, 7 exceedances of the hourly mean NO₂ AQO value were recorded during the year, which is within the 18 permitted hours for compliance with the hourly NO₂ AQO. In the last 7 years, at all of the automatic monitoring sites, there has been considerable variability in the numbers of hours of exceedances from one year to the next with no clear upward or downward trend.

At LW1, the urban background site, there have been fewer than 5 exceedances of the hourly NO₂ AQO value in all years since 2009, with no exceedances recorded in 2011, 2014 and 2015. At LW2 there were no recorded exceedances of the hourly NO₂ AQO value in any year between 2010 and 2014, inclusive. In 2009 there were 6 hours exceeding the hourly NO₂ AQO value, whilst in 2015 there were 7 hours exceeding the hourly NO₂ AQO value. These results are within the permitted 18 hours of exceedance per year and so the 1-hour mean objective was achieved. At LW4, in 2013 there were 26 hours exceeding the hourly NO₂ AQO value; however, the data capture was below 75% and so it is more appropriate to calculate the 99.8th percentile of hourly NO₂ concentrations for comparing against the 1-hour mean objective. The 99.8th percentile result was 221 μ g m⁻³ – a value of greater than 200 μ g m⁻³ indicates that the 1-hour mean objective was achieved in both years at LW4.

Table F.Annual Mean PM10 Automatic Monitoring Results (µg m-3)

	Valid data Valid data		Annual Mean Concentration (μgm ⁻³)								
Site ID	capture for monitoring period % ^a	onitoring capture for capture for capture for capture for capture 2015 % ^b	2009	2010	2011	2012	2013	2014	2015		
LW2	92	92	25	25	26	26	23	23 ^c	23		
LW3	92	92	-	23	23	22	24	24	22		
LW4	97	97	-	-	-	24	28	25 ^c	17		

Notes: Exceedance of the PM_{10} annual mean AQO of 40 µg m⁻³ are shown in **bold**.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

The annual mean PM_{10} concentrations recorded the three automatic monitoring stations within the LB of Lewisham that measure particulate matter were well below the AQO of 40 µg m⁻³ in 2015, and in all years since 2009. The highest annual mean PM_{10} concentration in 2015 was 23 µg m⁻³ at LW2. The highest recorded annual mean PM_{10} concentration since 2009 was 28 µg m⁻³ at LW4 in 2013.

Over the last 7 years PM₁₀ concentrations at LW2 and LW3 automatic monitoring stations have been quite stable with very small changes from one year to the next. At LW4, where monitoring commenced in 2012, there have been larger variations in concentrations but without any clear evidence of an increasing or decreasing tendency.

Table G. PM₁₀ Automatic Monitor Results: Comparison with 24-Hour Mean Objective

	Valid data	Valid data	Number of Daily Means > 50 μgm ⁻³						
Site ID	monitoring period % ^a	capture 2015 % ^b	2009	2010	2011	2012	2013	2014	2015
LW2	92	92	12	6	19	15 (47) °	15	14 (38) ^c	8
LW3	92	92	-	4 (39) °	22	20	13	27	16
LW4	97	97	-	-	-	3 (36) °	19	13 (41) ^c	1

Notes: Exceedance of the PM₁₀ short term AQO of 50 μ g m⁻³ over the permitted 35 days per year or where the 90.4th percentile exceeds 50 μ g m⁻³ are shown in **bold**. Where the period of valid data is less than 90% of a full year, the 90.4th percentile is shown in brackets after the number of exceedances.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

All sites achieved the 24-hour mean PM_{10} AQO in 2015. In all years since 2009 all of the PM_{10} monitoring locations have achieved the 24-hour mean PM_{10} AQO. The highest numbers of exceedances of the daily mean PM_{10} objective value (50 µg m⁻³) was 16 days at site LW3. This is well below the 35 permitted exceedances per year for compliance with the objective. In comparison to 2014, the numbers of daily exceedances recorded in 2015 were fewer at all sites. At LW2 and LW3 there does appear to be some evidence to suggest a longer-term downward trend in the numbers of days of exceedances since 2009, despite there being variations from one year to the next.

Table H.	Annual Mean PM _{2.5} Automatic Monitoring Results (µg m ⁻³
гаріе п.	Annual Wean PWI2.5 Automatic Wonitoring Results (µg m

Site ID	Valid data Valid data		Annual Mean Concentration (µgm ⁻³)						
	capture for monitoring period % ^a	capture 2015 % ^b	2009	2010	2011	2012	2013	2014	2015
LW2	89	89	-	-	-	-	17.6	16.5	15.5

Notes: Exceedance of the PM_{2.5} annual mean AQO of 25 μ gm⁻³ are shown in **bold**.

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%

Since 2013, the LB of Lewisham has been continuously monitoring $PM_{2.5}$ concentrations at site LW2. In 2015, the annual mean $PM_{2.5}$ concentration measured was 15.5 µg m⁻³, which is below the annual mean $PM_{2.5}$ AQO of 25 µg m⁻³ and the lowest recorded since monitoring began. The annual mean $PM_{2.5}$ concentration has been below the annual mean $PM_{2.5}$ AQO in all years since monitoring commenced and has a decrease of approximately 1 µg m⁻³ each year.

Table I. SO2 Automatic Monitor Results for 2015: Comparison with Objectives

	Valid data capture for	Valid data capture	Number of: ^c			
Site ID	monitoring period % ^a	2015 % ^b	15-minute means > 266 μgm ⁻³	1-hour mean > 350 μgm ⁻³	24-hour mean > 125 μ gm ⁻³	
LW1	98	98	0	0	0	
LW2	96	96	0	0	0	

Exceedances of the SO₂ AQOs are shown in **bold** (15-min mean = 35 allowed a year, 1-hour mean = 24 allowed a year, 24-hour mean = 3 allowed / year)

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" as in Box 3.2 of TG(09) (http://laqm.defra.gov.uk/technical-guidance/index.html?d=page=38), if valid data capture is less than 75%

Automatic monitoring of SO₂ is carried out at 2 locations in the LB of Lewisham. The results of the monitoring during 2015 are summarised in Table I. There were no exceedances of any of the AQOs or standards relating to SO₂ during 2015.

2. Action to Improve Air Quality

Table J. Commitment to Cleaner Air Borough Criteria

Theme	Criteria		Achieved (Y/N)	Evidence
1. Political leadership	1.a	Pledged to become a Cleaner Air for London Borough (at cabinet level) by taking significant action to improve local air quality and signing up to specific delivery targets.	Y	No evidence required
	1.b	Provided an up-to-date Air Quality Action Plan (AQAP), fully incorporated into LIP funding and core strategies.	Y	The Draft AQAP for 2016-2021 is out for consultation, and will replace the 2008 AQAP that is available online at <u>http://www.lewisham.gov.uk/myservices/environment/air- pollution/Documents/LewishamAirQualityActionPlan.pdf</u>
2. Taking action	2.a	Taken decisive action to address air pollution, especially where human exposure and vulnerability (e.g. schools, older people, hospitals etc.) is highest.	Y	LB Lewisham has produced a Joint Strategic Needs Assessment (JSNA), with Public Health and Environmental Protection collaboration
	2.b	Developed plans for business engagement (including optimising deliveries and supply chain), retrofitting public buildings using the RE:FIT framework, integrating no engine idling awareness raising into the work of civil enforcement officers.	Z	Business engagement projects are due to be carried out as part of the requirements under the JSNA.
	2.c	Integrated transport and air quality, including by improving traffic flows on borough roads to reduce stop/start conditions	Y	Evelyn Street Corridor major regeneration project, which includes major changes to road network to improve traffic conditions and congestion. Introducing 20 mph speed limits on all Borough highways.
	2.d	Made additional resources available to improve local air quality, including by pooling its collective resources (s106 funding, LIPs, parking revenue, etc.).	Y	The Borough has won funding for schemes to improve air quality from the Mayor's Air Quality Fund (MAQF), with funding matched as part of the LIP programme.
3. Leading by example	3.a	Invested sufficient resources to complement and drive action from others	Y	One full time post equivalent with an increase to one and half post during the MAQF R2 2016-2019

	3.b	Maintained an appropriate monitoring network so that air quality impacts within the borough can be properly understood	Y	All existing Air Quality monitoring locations have been maintained (32 diffusion tube locations and 4 automatic monitors)
	3.c	Reduced emissions from council operations, including emissions from buildings, vehicles and all activities.	Y	Reductions in Borough's own vehicle fleet emissions through selection of lower emission vehicles
	3.d	Adopted a procurement code which reduces emissions from its own and its suppliers activities, including from buildings and vehicles operated by and on their behalf (e.g. rubbish trucks).	Y	Plans in place for 40% of diesel vehicles to meet Euro VI standard, with the potential to increase in subsequent year.
4. Using the planning system	4.a	Fully implemented the Mayor's policies relating to air quality neutral, combined heat and power and biomass.	Y	All approved planning applications must meet the Mayor's requirements relating to 'Air Quality neutral' and CHPs
	4.b	Collected s106 from new developments to ensure air quality neutral development, <i>where possible</i>	Ν	Where AQ neutral has not be met, compliance has been achieved by changes to schemes, so S106 money has not been required.
	4.c	Provided additional enforcement of construction and demolition guidance, with regular checks on medium and high risk building sites.	Y	Sites are visited periodically based on risk. An increase in visits will occur from the end of 2016 as MAQF money becomes available to resource.
5. Integrating air quality into the public health system	5	Included air quality in the borough's Health and Wellbeing Strategy and/or the Joint Strategic Needs Assessment	Y	Raising awareness of air quality issues through education at 5 local primary schools through the Joint Strategic Needs Assessment
6. Informing the public	6.a	Raised awareness about air quality locally	Y	A public art project has been developed to raise air quality issues and will be implemented in 2016 (www.tompearman.co.uk/brockley-corridor-arts)

2.1 Air Quality Action Plan Progress

Table K provides a brief summary of LB of Lewisham's progress against the 2008 Air Quality Action Plan (AQAP), showing progress made this year. New projects which commenced in 2015 are shown at the bottom of the table. A draft AQAP for Lewisham has been prepared, which, once approved, will replace the 2008 AQAP. The table also highlights new measures that will be included in this new AQAP.

Highlights of successful projects delivered through the 2008 AQAP include:

- Plans for the expansion of the electric vehicle charging points throughout the borough
- 20 mph speed limit being introduced on all of LB of Lewisham's highways
- The North Lewisham links project which is improving walking and cycling routes across Deptford and New Cross, which also includes the Quietways project (cycle routes through quieter side streets and parks, aimed at encouraging less-confident cyclists)
- Planning Policy that is encouraging car-free developments
- Reductions in the Council's own emissions through fleet vehicle selection
- Raising awareness on air quality issues through school education programmes and a public art project.

Table K. Delivery of Air Quality Action Plan Measures

Action Category	Action	Progress	Further information
Emissions from	Ensuring emissions from construction are	IN PROGRESS	Local Policy and Local
developments and	minimised	 Already in operation. 	List requirement.
buildings		 Benefits potentially significant but 	
		unquantifiable.	
		 Impact of reduction will be ongoing. 	
Emissions from	Ensuring enforcement of Non Road Mobile	IN PROGRESS	Only used for Major
developments and	Machinery (NRMM) air quality policies	 Condition already introduced. 	sites.
buildings		 Benefits potentially significant but 	
		unquantifiable.	
		 Impact of reduction will be ongoing. 	
Emissions from	Enforcing alternative clean and efficient	IN PROGRESS	Only used in limited
developments and	energy supplies (to replace Enforcing CHP	 In operation however continuing to 	circumstances, where
buildings	and biomass air quality policies)	consider best practice and alternative heat	the tests for conditions
		and power supplies.	are met.
		 Benefits potentially significant but 	
		unquantifiable.	
		 Abatement conditions review via planning. 	
Emissions from	Enforcing Air Quality Neutral policies	IN PROGRESS	Considered on a site by
developments and		 Already in operation. 	site basis as new
buildings		 Impact of reduction will be ongoing. 	development is
		 Benefits potentially significant but 	proposed. (<u>Core</u>
		unquantifiable	Strategy Policy 12)
Emissions from	Ensuring adequate, appropriate, and well	IN PROGRESS	Urban greening
developments and	located green space and infrastructure is	 Considered as part of the design of 	strategies.
buildings	included in new developments	schemes that come forward.	Considered on a site by
		 Benefits potentially significant but 	site basis as new
		unquantifiable	development is
			proposed. (<u>Core</u>
			Strategy Policy 12)

Action Category	Action	Progress	Further information
Emissions from developments and buildings	Ensuring that Smoke Control Zones are appropriately identified and fully promoted and enforced	 COMPLETED Whole of borough is already a Smoke Control Area. (Smoke Control Order 2010) There was specific publicity promotion at the time of the order in 2010 IN PROGRESS 	
		 Respond and report on complaints and action taken. Further publicity, will review in April 2017 	
Emissions from developments and buildings	Promoting and delivering energy efficiency retrofitting projects in workplaces and homes, including through using the GLA RE:NEW and RE:FIT programmes, where appropriate, to replace old boilers /top-up loft insulation in combination with other energy conservation measures.	 IN PROGRESS The biannual Home Energy Conservation Act report is due in 2017 which will provide progress on measures. 	Lewisham Council Corporate Sustainability Use of Resources Statement is provided on a periodic basis and could be used to provide input to monitoring.
Emissions from developments and buildings	Introduce a requirement for a minimum EPC rating for privately rented sector HMOs covered by both the mandatory and additional licensing schemes	 IN PROGRESS Timescale for implementation is April 2017, with monitoring of action considered after this date. 	
Emissions from developments and buildings	Introduce a requirement for any works covered by the Disabled Facilities Grant or discretionary housing improvement grants to meet level D EPC rating in privately owned accommodation	 IN PROGRESS Timescale for implementation is December 2016, with monitoring of action considered after this date. 	

Action Category	Action	Progress	Further information
Public health and	Ensure that Directors of Public Health	COMPLETED	
awareness raising	(DsPHs) have been fully briefed on the	 Already provided as part of the 	
	scale of the problem in the local authority	consultation for the draft Air Quality Action	
	area, what is being done, and what is	Plan	
	needed.		
Public health and	Public Health Teams should be supporting	IN PROGRESS	
awareness raising	engagement with local stakeholders	 Different initiatives being considered and 	
	(businesses, schools, community groups	developed over period of Air Quality Action	
	and healthcare providers). They should be	Plan.	
	asked for their support via the DsPH when		
	projects are being developed.		
Public health and	Director of Public Health to have	ONGOING	
awareness raising	responsibility for ensuring their Joint	 Already have a JSNA. 	
	Strategic Needs Assessment (JSNA) has up	Health Protection Committee will review at	
	to date information on air quality impacts	time of sign off	
	on the population		
Public health and	Strengthening co-ordination with Public	IN PROGRESS	
awareness raising	Health by ensuring that at least one	This is part of the health protection remit	
	Consultant-grade public health specialist	of one of the Consultants in Public Health.	
	within the borough has air quality	Health and Wellbeing Strategy delivery	
	responsibilities outlined in their job profile	plan will be reviewed for 2018 – 2020 to	
		incorporate air quality.	
Public health and	Engagement with businesses	IN PROGRESS	
awareness raising		 Different initiatives being considered and 	
		developed over period of Action Plan. Cost	
		will be dependent on project initiated.	
Public health and	Promotion of availability of airTEXT	IN PROGRESS	
awareness raising		 Reviewing opportunities for 	
		communication by April 2017.	

Action Category	Action	Progress	Further information
Public health and	Encourage schools to join the TfL STARS	IN PROGRESS	
awareness raising	accredited travel planning programme by	Already in operation with 78.5% of schools	
	providing information on the benefits to	in the borough having an accreditation	
	schools and supporting the		
	implementation of such a programme		
Public health and	Air quality at schools	IN PROGRESS	
awareness raising		 Review opportunities for School 	
		engagement by April 2017.	
Delivery servicing and	Update local authority Procurement	IN PROGRESS	
freight	policies to include a requirement for	 Already part of policy. Review of PPQ and 	
	suppliers with large fleets to have attained	ITT by April 2017 for implementation.	
	silver Fleet Operator Recognition Scheme		
	(FORS) accreditation		
Delivery servicing and	Update Procurement policies to ensure	IN PROGRESS	
freight	sustainable logistical measures are	 Asset Management Strategy 2015-2020 	
	implemented (and include requirements	produced. Procurement to review by April	
	for preferentially scoring bidders based on	2017	
	their sustainability criteria)		
Delivery servicing and	Re-organisation of freight to support	IN PROGRESS	
freight	consolidation (or micro-consolidation) of	Review construction freight consolidation	
	deliveries, by setting up or participating in	by April 2017 for MAQF area. Review sites	
	new logistics facilities, and/or requiring	available for Council suppliers by April	
	that council suppliers participate in these	2017	
Delivery servicing and	Virtual Loading Bays and priority loading	IN PROGRESS	
freight	for ultra-low emission delivery vehicles	To be considered at next Parking review in 2017	
Borough fleet actions	Join the Fleet Operator Recognition	IN PROGRESS	
	Scheme (FORS) for the borough's own fleet	Applied for FORS membership. Reviewing	
	and obtain Gold accreditation	accreditation April 2017	
Borough fleet actions	Increasing the number of hydrogen,	IN PROGRESS	
	electric, hybrid, bio-methane and cleaner	 Working with LoCITY to increase the 	
	vehicles in the boroughs' fleet	availability and uptake of low emission	
		commercial vehicles.	

Action Category	Action	Progress	Further information
Borough fleet actions	Accelerate uptake of new Euro VI vehicles	IN PROGRESS	
	in borough fleet	 49 trucks to be changed to Euro VI by April 	
		2017.	
Borough fleet actions	Smarter Driver Training, or equivalent, for	ONGOING	
	drivers of vehicles in Borough Own Fleet	 Already provided through 'Safe City 	
	i.e. through training of fuel efficient driving	Driving' course.	
	and providing regular re-training of staff		
Localised solutions	Improvement and Introduction of green	ONGOING	Urban greening
	spaces in new developments through the	 Already in operation. Impact of reduction 	strategies.
	Planning process by conditions and S106	will be ongoing. Greenspace provision is	Considered on a site by
	obligations.	proportionate to scale of development and	site basis as new
		will be monitored through the approval &	development is
		discharge of conditions & obligations.	proposed. (<u>Core</u>
			Strategy Policy 12)
Cleaner transport	Discouraging unnecessary idling by	IN PROGRESS	
	vehicles near schools	 Install 'anti idling signs' at schools and 	
		review any possible campaign in April 2017	
Cleaner transport	Speed control measures e.g. lowering the	IN PROGRESS	
	legal speed limit to 20mph in built up	 All Lewisham Roads to introduce 20 mph 	
	residential areas	zone September 2016	
Cleaner transport	Increasing the proportion of electric,	IN PROGRESS	Introduced as part of
	hydrogen and ultra-low emission vehicles	 Work with car clubs towards compliment 	Travel Plans for new
	in Car Clubs	of electric vehicles. Review April 2017.	development
Cleaner transport	Very Important Pedestrian Days (e.g. no	IN PROGRESS	
	vehicles on certain roads on a Sunday) and	 Review opportunities through community 	
	similar initiatives	groups by April 2017.	
Cleaner transport	Free or discounted parking charges at	IN PROGRESS	
	existing parking meters for zero emission	 Only achieved through the cashless 	
	cars	meter's model. To be considered at next	
		Parking review in 2017	

Action Category	Action	Progress	Further information
Cleaner transport	Free or discounted residential parking	ONGOING	The annual parking
	permits for zero emission cars	 Discounted residential parking permits 	report provides a
		already available for zero emission	percentage against total
		vehicles.	permits issued.
Cleaner transport	Surcharge on diesel vehicles below Euro 6	IN PROGRESS	
	standards for Resident and Controlled	• To be considered at next Parking review in	
	Parking Zone permits	2017	
Cleaner transport	Installation of residential electric charge	IN PROGRESS	Local Policy and Local
	points	• For all planning major site developments	List requirement.
		20% active charging points and 20%	
		passive installed. Through Source London,	
		Blue Point maintain EVCPs and expanding	
		network from 10 sites.	
		• By April 2017 to include at least an	
		additional 14 locations.	
Cleaner transport	Installation of rapid chargers to help	IN PROGRESS	
	encourage the take-up of electric taxis,	 Already in communication with TfL in 	
	cabs and commercial vehicles (in	potential for establishing points.	
	partnership with TfL and/or OLEV)		
Cleaner transport	Reprioritisation of road space; reducing	IN PROGRESS	Lewisham's Annual
	parking at some destinations and/or	The proposed Controlled Parking Zone	Parking Report will
	restricting parking on congested high	(CPZ) Programme will be approved	provide progress and
	streets and A roads to improve bus journey	annually at Executive Director level in line	delivery of CPZs
	times, cycling experience, and reduce	with its Parking policy	
	emissions caused by congested traffic		

Action Category	Action	Progress	Further information
Cleaner transport	Provision of infrastructure to support	IN PROGRESS	
	walking and cycling	The North Lewisham links project which is	
		improving walking and cycling routes	
		across Deptford and New Cross, which also	
		includes the Quietways project (cycle	
		routes through quieter side streets and	
		parks, aimed at encouraging less-confident	
		cyclists)	
GLA AQ FOCUS AREA 1	Development of a Zonal Construction	IN PROGRESS	
Cleaner	Logistic Framework for the Evelyn Street	 Quarterly review with GLA on progress. Air 	
Transport	Corridor	Quality benefits to be quantified during	
		progress.	
		 £305,250 over 3 years 2016-2019. funded 	
		through MAQF R2 and part match funded	
		by Lewisham Transport	
GLA AQ FOCUS AREA 3	Provision of public art along the Brockley	IN PROGRESS	
Public health and	Corridor to raise awareness on air quality	 Consultation with Local Assembly and local 	
awareness raising		community, to be installed by the end of	
		2016	
		 £17,000 provided as part of the MAQF R1 	
		fund	
GLA AQ FOCUS AREA 3	Road Layout changes along the Crofton	IN PROGRESS	
Cleaner Transport	Park area of the Brockley corridor	 Works planned for 2017/18 	
		• Originally part of the MAQF R1 funding, but	
		now through Local Transport Fund	

3. Planning Update and Other New Sources of Emissions

3.1 New or significantly changed industrial or other sources

In 2015, the LB of Lewisham has not identified any new or significantly changed road traffic or industrial sources of emissions. However, there a number of developments identified as emission sources in the 2015 Updating and Screening Assessment that are still ongoing. The most significant of these include:

- Lewisham Gateway a large development scheme aiming to better connect Lewisham town centre with nearby residential communities, the DLR and mainline rail stations. The scheme involves a major realignment of the A20/A21 roundabout and the construction of a number of new homes.
- Plough Way (a.k.a. Surrey Wharves) incorporates four separate development sites. *Marine Wharf West*, which includes 532 new homes plus space for shops and businesses. *Marine Wharf West* which is awaiting approval but will create a further 183 homes and commercial floorspace. *Cannon Wharf*, which includes 679 new homes (including two tall buildings of 20 and 23 storeys), a purpose-built business centre which is expected to create at least 80 new jobs on the site (25% more than previously), a children's nursery, and landscaping along the former route of the Surrey Canal. *7-17 Yeoman Street* where Planning has been granted for 33 new homes.
- Convoys Wharf The largest development site within the borough consisting of up to 3,500 new homes, retail space, public open areas and transport improvements in the area received approval and by the end of 2015 was at the early stage with some demolition. The redevelopment of the site has the potential to provide public access to a major part of the borough's riverfront for the first time in centuries.

Appendix A Details of Monitoring Site QA/QC

A.1 Automatic Monitoring Sites

Calibrations of continuous gas monitors are carried out with certified calibration gases for each analyser. Routine calibrations are undertaken manually every 2 weeks by the Local Authority Officer for LW1 and LW4. At LW2, a nightly auto-calibration is invoked.

The calibration data are sent to ERG-King's College London who are responsible for Data Management, data validation and ratification. Site Audits are carried out annually, and includes UKAS accredited onsite gas cylinder certification and on-site testing of sampling system efficiency.

PM₁₀ Monitoring Adjustment

TEOM PM₁₀ measurements are corrected using the Volatile Correction Model (VCM) by ERG-King's College London.

A.2 Diffusion Tube Quality Assurance / Quality Control

Diffusion tubes for NO_2 in LB of Lewisham are provided by Gradko International Ltd, using a preparation method of 50% Triethanolamine (TEA) in acetone.

Gradko participate in the AIR PT scheme. AIR is an independent analytical proficiency-testing (PT) scheme, operated by LGC Standards and supported by the Health and Safety Laboratory (HSL). AIR PT is a new scheme, started in April 2014, which combines two long running PT schemes: LGC Standards STACKS PT scheme and HSL WASP PT scheme.

AIR NO2 PT forms an integral part of the UK NO₂ Network's QA/QC, and is a useful tool in assessing the analytical performance of those laboratories supplying diffusion tubes to Local Authorities for use in the context of Local Air Quality Management (LAQM). Defra and the Devolved Administrations advise that diffusion tubes used for LAQM should be obtained from laboratories that have demonstrated satisfactory performance in the AIR PT scheme.

The percentage of results submitted by Gradko International Ltd which were subsequently determined to be satisfactory was 100% for all tests in AIR-PT Rounds AR001-AR010 (April 2014 - November 2015).

Factor from Local Co-location Studies (if available)

A local bias adjustment factor of 1.02 was calculated from a triplicate of diffusion tubes co-located with the continuous NO₂ monitoring site at New Cross Road (LW2). Figure A.1 shows details of the calculation of the local bias adjustment factor for 2015.

Checking Precision and Accuracy of Triplicate Tubes																
	Diffusion Tubes Measurements											Automatic Method Data Quality Ch				
Period	Start Date dd/mm/yyyy	End Date dd/mm/yyyy	Tube 1 μgm ⁻³	Tube 2 µgm ⁻³	Tube 3 µgm ⁻³	Triplicate Mean	Standard Deviation	Coefficient of Variation (CV)	95% CI of mean		Period Mean	Data Capture (% DC)	Tubes Precision Check	Automatic Monitor Data		
1	07/01/2015	04/02/2015	52.6	49.5	50.8	51	1.5	3	3.8		78.18	99.55	Good	Good		
2	04/02/2015	04/03/2015	49.5	48.5	48.4	49	0.6	1	1.5		78.03	82.74	Good	Good		
3	04/03/2015	31/03/2015	56.5	47.0	47.3	50	5.4	11	13.4		65.63	99.54	Good	Good		
4	31/03/2015	30/04/2015	47.3	51.2		49	2.8	6	24.7		47.00	99.86	Good	Good		
5	30/04/2015	27/05/2015	47.3	46.2	46.7	47	0.6	1	1.4		41.82	99.07	Good	Good		
6	27/05/2015	02/07/2015	54.6	53.9	54.1	54	0.3	1	0.8		41.44 100.00		Good	Good		
7	02/07/2015	29/07/2015	50.8	55.3	55.9	54	2.8	5	7.0		34.51	99.85	Good	Good		
8	29/07/2015	27/08/2015	46.9	44.1	44.8	45	1.4	3	3.5		34.29	100.00	Good	Good		
9	27/08/2015	30/09/2015	53.4	50.3	61.2	55	5.6	10	13.9		44.36	60.66	Good	or Data Capture		
10	30/09/2015	28/10/2015	57.6	56.0	56.9	57	0.8	1	2.0		48.91	72.92	Good	or Data Capture		
11	28/10/2015	02/12/2015	47.9	44.6	47.3	47	1.8	4	4.4		41.02	100.00	Good	Good		
12	02/12/2015	05/01/2016	31.0	31.5	34.7	32	2.0	6	5.0		23.96	100.00	Good	Good		
13	ecessary to bay	a results for at le	ast two tub	es in order	to calculate	the precision	of the measure	ments		1	0		Cood presiden	Good		
	leccessary to nav			ca in order	to calculate						Overa	Il survey>	(Check everage	CV & DC from		
Sit	e Name/ ID:						Precision	12 out of	12 periods	have a C	v smaller ti	nan 20%	Accuracy ca	culations)		
	Accuracy	(with	95% cor	nfidence	interval)		Accuracy	(with	95% con	fidence	interval)		,			
	without pe	riods with C	V larger	than 20%	6		WITH ALL	DATA		50%						
	Bias calcula	ited using 10) periods	of data	-		Bias calcu	lated using 1	0 periods	of data		s	т.	-		
	F	Bias factor A	1.02	(0.82 -	1.32)		2.40 04.04	Bias factor A	1.02	(0.82 -	-1 32) and a second sec					
		Bias B	-2%	(-24% -	21%)			Bias B	-2%	(-24% -	21%)	gn0%	•	•		
	Diffusion T	uboo Mooni		uam ⁻³			Diffusion	Tubec Mean	10	uam-3		. <u> </u>	Without CV>20%	With all data		
	Moon	(Procision)	40	μgiii			Moon	(Procision)	40	pgin		Snj -25%				
	Interaction of the	(Frecision).	4	-3			wedit C		4			ä -50%				
	Auto Data Can	matic Mean: oture for perio	ds used:	98%			Data Ca	omatic Mean: Ipture for peri	ods used:	µgm - 98%		-50%				
	Adjusted T	ubes Mean:	49 (3	9 - 63)	µgm ⁻³		Adjusted	Tubes Mean:	49 (39	- 63)	µgm ⁻³		Jaume Ta	rga, for AEA		
												۰ ۱	/ersion 04 - Fel	oruary 2011		

Figure A.1: Local bias adjustment factor calculation

National Bias Adjustment Factor

The national bias adjustment factor spreadsheet is available from the Defra website. The national bias adjustment factor is the average of all bias adjustment factors uploaded by local authorities that use the same laboratory and preparation method for the year in question. The national bias adjustment factor for 50% TEA/Acetone preparation, supplied and analysed by Gradko in 2015 is shown in Figure A.2.

National Diffusion Tube	neet Version Number: 03/16												
Follow the steps below in the correct order to Data only apply to tubes exposed monthly and	This spreadsheet will be updated at the end of June 2016												
Whenever presenting adjusted data, you should state the adjustment factor used and the version of the spreadsheet This spreadhseet will be updated every few months: the factors may therefore be subject to change. This should not discourage their immediate use.													
The LAQM Helpdesk is operated on behalf of Defra a AECOM and the National Physical Laboratory.	hysical Li	aboratory. C	riginal										
Step 1:													
Select the Laboratory that Analyses Your Tubes from the Drop-Down List	Select a Preparation Method from the Drop- Down List	Select a Year from the Drop- Down List	^d / ₂ Where there is only one study for a chosen combination, you should use the adjustment factor shown with caution. Where there is more than one study, use the overall factor ³ shown in blue at the foot of the final column.										
If a laboratory is not shown, we have no data for this laboratory.	a preparation method is no shown, we have no data or this method at this laboratory.	If a year is not shown, we have no data ²	مام لا you have your own co-location study then see footnote ⁴ . If uncertain what to do then contact the Local Air Quality Management Helpder LAOMHelpdesk @ukbureauventas.com or 0600 0327953										
Analysed By ¹	Method To undo your selection, choose (All) from the pop-up list	Year ⁵ To undo your selection, choose (All)	Site Type	Local Authority	Length of Study (months)	Diffusion Tube Mean Conc. (Dm) (µg/m³)	Automatic Monitor Mean Conc. (Cm) (µg/m³)	Bias (B)	Tube Precision ⁶	Bias Adjustment Factor (A) (Cm/Dm)			
Gradko	50% TEA in acetone	2015	R	Bedford Borough Council	12	35	33	6.4%	G	0.94			
Gradko	50% TEA in acetone	2015	UB	Norwich City Council	9	12	12	-3.3%	G	1.03			
Gradko	50% TEA in acetone	2015	R	West Berkshire Council	11	38	35	10.7%	G	0.90			
Gradko	50% TEA in acetone	2015	R	East Hampshire District Council	11	22	20	9.5%	G	0.91			
Gradko	50% TEA in acetone	2015	R	LB Haringey	12	37	40	-9.1%	S	1.10			
Gradko	50% TEA in acetone	2015	KS	London Borough of Croydon	12	54	52	4.7%	G	0.96			
Gradko	50% TEA in acetone	2015	В	London Borough of Richmond upon Thames	12	21	21	-0.2%	G	1.00			
Gradko	50% TEA in acetone	2015	R	London Borough of Richmond upon Thames	12	36	33	8.9%	G	0.92			
Gradko	50% TEA in acetone	2015	KS	Marylebone Road Intercomparison	12	86	81	6.4%	G	0.94			
Gradko	50% TEA in acetone	2015	UI	Middlesbrough	11	16	14	11.7%	G	0.90			
Gradko	50% TEA in acetone	2015	SI	Redcar & Cleveland	12	12	12	0.1%	G	1.00			
Gradko	50% TEA in acetone	2015	R	West Dorset District Council	12	12	11	15.5%	G	0.87			
Gradko	50% TEA in acetone	2015	R	Worthing Borough Council	11	42	37	14.5%	G	0.87			
Gradko	50% TEA in acetone	2015	R	Royal Borough of Windsor and Maidenhead	12	34	37	-8.4%	G	1.09			
Gradko	50% TEA in acetone	2015	R	Royal Borough of Windsor and Maidenhead	12	40	38	4.2%	G	0.96			
Gradko	50% TEA in acetone	2015		Overall Factor ³ (15 studies)					Use	0.95			

Figure A.2: National bias adjustment factor spreadsheet

Discussion of Choice of Factor to Use

It was decided to use the local bias adjustment factor of 1.02, rather than the national factor of 0.95, as the local factor should better represent local conditions in LB Lewisham, and is also more conservative.

A.3 Adjustments to the Ratified Monitoring Data

Distance Adjustment of Diffusion Tube locations

Although a small number of diffusion tubes are not located at relevant exposure (e.g. building facades), to maintain consistency for analysing diffusion tube trends over several years, NO₂ concentrations at these locations have not been distance corrected.

A.4 Annual Mean NO₂ concentration Trend Analysis

To clearly understand and visualise the trends in annual mean NO₂ concentration over the last 7 years, plots of the annual concentrations recorded at all non-automatic monitoring locations have been produced and are shown below.

Figure A.3: Annual mean NO₂ concentrations at roadside diffusion tube sites (1)

Note: AQO (ST) = $60 \ \mu gm^{-3}$. Diffusion tubes cannot be used to directly compare against the 1-hour mean NO₂ objective. However, LLAQM.TG16 states that at locations where annual mean NO₂ concentrations of greater than 60 μgm^{-3} are monitored the 1-hour mean NO₂ objective is likely to be exceeded.

Figure A.4: Annual mean NO₂ concentrations at roadside diffusion tube sites (2)

Note: AQO (ST) = $60 \ \mu gm^{-3}$. Diffusion tubes cannot be used to directly compare against the 1-hour mean NO₂ objective. However, LLAQM.TG16 states that at locations where annual mean NO₂ concentrations of greater than 60 μgm^{-3} are monitored the 1-hour mean NO₂ objective is likely to be exceeded.

Figure A.5: Annual mean NO₂ concentrations at urban background diffusion tube sites

Appendix B Full Monthly Diffusion Tube Results for 2015

Table N. NO₂ Diffusion Tube Results

		Valid data capture 2015 % ^b	Annual Mean NO ₂													
Site ID	Valid data capture for monitoring period % ^a		Jan	Feb	March	Apr	May	June	Jul	Aug	Sept	Oct	Nov	Dec	Annual mean – raw data ^c	Annual mean – bias adjusted c
L1	92	92	40.3	41.5	37.3	-	22.1	26.5	27.0	30.8	36.2	41.2	31.2	23.5	32.5	33.1
L2	83	83	30.7	31.4	25.2	-	19.5	-	22.2	27.0	28.4	35.3	32.0	23.9	27.6	28.1
L3	100	100	45.0	39.8	32.3	35.0	25.6	27.6	28.6	30.5	34.6	41.2	38.1	25.1	33.6	34.3
L4	100	100	37.2	34.8	38.9	33.6	25.9	29.4	25.8	33.3	34.7	41.4	39.6	30.6	33.8	34.4
L5	100	100	36.1	33.4	36.5	42.1	26.1	31.5	23.1	31.9	37.1	44.8	29.0	21.8	32.8	33.4
L6	83	83	37.7	39.0	31.2	34.5	29.5	29.5	29.8	34.6	36.5	42.5	-	-	34.5	35.2
L7	100	100	51.2	47.8	44.5	44.5	43.9	46.4	41.8	48.3	56.7	59.5	46.5	37.5	47.4	48.3
L8	100	100	39.1	51.4	43.3	46.8	37.4	37.3	36.9	41.8	46.1	49.2	38.3	29.0	41.4	42.2
L9	100	100	38.0	39.1	40.5	41.6	32.2	35.4	30.7	34.2	42.7	50.1	32.3	24.7	36.8	37.5
L10	92	92	38.6	42.0	50.8	-	28.5	34.9	26.9	39.6	45.8	53.1	37.7	27.2	38.7	39.4
L11	92	92	-	41.3	38.6	36.7	26.6	31.8	24.3	38.7	44.8	47.4	32.8	26.7	35.4	36.1
L12	83	83	40.2	33.1	26.4	24.0	19.4	20.7	-	21.0	27.2	-	30.2	21.3	26.4	26.9
L13	100	100	38.0	29.3	32.9	26.8	20.2	20.9	21.5	24.7	26.5	30.0	30.3	20.2	26.8	27.3
L14	100	100	33.8	36.4	28.6	27.1	19.7	21.8	23.1	26.9	28.4	37.2	38.9	30.5	29.4	29.9
L15	100	100	41.6	45.7	36.7	43.5	39.4	41.9	38.1	51.9	62.8	58.4	40.2	48.4	45.7	46.6
L16	100	100	46.6	50.1	47.7	49.9	41.2	51.4	38.2	50.0	58.7	67.4	41.6	29.6	47.7	48.7

			Annual Mean NO2													
Site ID	Valid data capture for monitoring period % ^a	Valid data capture 2015 % ^b	Jan	Feb	March	Apr	May	June	Jul	Aug	Sept	Oct	Νον	Dec	Annual mean – raw data ^c	Annual mean – bias adjusted
L17	100	100	52.6	49.5	56.5	47.3	47.3	54.6	50.8	46.9	53.4	57.6	47.9	31.0	49.6	50.6
L18	100	100	49.5	48.5	47.0	51.2	46.2	53.9	55.3	44.1	50.3	56.0	44.6	31.5	48.2	49.1
L19	83	83	50.8	48.4	47.3	-	46.7	54.1	55.9	44.8	-	56.9	47.3	34.7	48.7	49.7
L20	92	92	46.0	43.4	44.1	38.5	37.4	33.3	44.9	42.1	40.9	48.2	47.0	-	42.3	43.2
L21	100	100	54.8	52.4	46.5	46.5	46.9	52.3	55.3	54.2	46.4	49.7	50.4	36.2	49.3	50.3
L22	100	100	34.8	40.0	27.8	30.0	22.0	22.3	26.3	28.7	31.3	34.3	35.4	23.5	29.7	30.3
L23	100	100	47.0	51.3	61.0	60.5	41.8	46.5	45.8	55.8	54.9	57.6	48.1	39.4	50.8	51.8
L24	92	92	37.9	37.8	30.9	38.7	23.9	27.6	24.6	30.3	33.4	39.8	-	24.3	31.8	32.4
L25	100	100	30.4	27.6	23.8	22.1	16.5	17.9	16.3	19.6	23.5	28.2	27.2	20.6	22.8	23.3
L26	92	92	48.8	49.3	48.0	51.6	37.1	44.5	50.6	44.8	49.1	-	47.3	37.7	46.2	47.2
L27	100	100	59.7	57.8	57.7	54.7	51.3	59.7	49.9	52.3	64.5	63.5	59.3	41.9	56.0	57.1
L28	100	100	51.6	63.7	63.9	56.2	51.6	58.2	60.6	63.1	59.1	68.3	52.1	41.2	57.5	58.6
L29	100	100	40.6	30.2	31.5	29.9	20.3	23.4	18.7	24.6	30.3	37.4	28.2	21.8	28.1	28.6
L30	83	83	34.9	36.3	32.3	31.1	21.8	23.9	-	-	36.1	42.4	33.4	24.3	31.7	32.3
L31	100	100	28.1	29.5	25.9	24.0	15.9	15.8	15.4	20.2	25.8	32.1	25.0	18.9	23.1	23.5
L32	92	92	-	32.8	31.0	30.4	22.1	21.8	23.0	25.7	30.1	35.3	32.0	23.9	28.0	28.6
L33	100	100	44.4	46.1	43.8	36.4	37.0	36.1	34.1	38.4	44.3	53.0	44.0	34.2	41.0	41.8
L34	100	100	30.5	32.1	29.9	26.5	18.2	20.6	19.8	23.8	31.7	33.5	28.7	22.3	26.5	27.0

^a data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" in accordance with LLAQM Technical Guidance, if valid data capture is less than 75%