

AC22260: Willow Way, Sydenham – Surface and Foul Water Drainage Strategy – Technical Note

1. Introduction

ABSTRUCT Consulting were appointed by Kitewood Estates Ltd (Kitewood), the applicant, to undertake a Drainage Strategy to support their planning application (DC/22/129789). This was submitted as report AC22260-ABS-XX-XX-RP-C-5800, along with supporting drawings and calculations.

We have received comments back from the Lead Local Flood Authority (LLFA) on 16th March 2023, a copy of which can be found in Appendix A. The purpose of this document is to respond to the points raised within this document as the LPA did not allow time to respond prior to the determination of the application on 23rd March 2023.

2. <u>Response to Requests for Further Information</u>

The below contains our response to each of the bullet points raised under the section "To address the above, please can the applicant submit information which:"

2.1. Demonstrates that they have considered smaller scale rainwater harvesting features.

The majority of the roof area for the proposed development will be green roofed, and therefore very little rainfall will run-off from the roof, instead being captured at source and absorbed by the planting.

However, there are some areas of roof which do not have the extensive green roof elements we have shown on our drawing within the report. These areas are a communal roof space for the residents and include intensive planting built up using the ZinCo Green Roof system or similar. These are acting as Rain Gardens in these areas and contain a layer to hold back surface water within the build up to irrigate these areas during drier periods of little or no rain.

Therefore further use of the roof water has been considered and is being used, as demonstrated by the additional information contained within Appendix B.

2.2. Confirms whether the proposed surface water discharge is to a watercourse or combined sewer, with consideration given to the statement in page 6 of the Surface Water Drainage Strategy Report.

This is a typo within the report, the surface water will discharge to the Thames Water Combined Sewer as per the drawing contained within the appendix to report AC22260-ABS-XX-XX-RP-C-5800.

2.3. Ensures the proposed runoff rates listed in the report align with those detailed in the calculations.

There is a typo within Table 3 for the 1:30 year proposed Post Development Runoff Rate. The table states 1.9l/s, whilst the calculations show 2.0l/s. However as this rate is still equal to or lower than the practical minimum chosen of 2l/s, and represents only 4.1% of the pre-development flow rate of 48.9l/s (as opposed to the 3.9% stated), this still represents a large reduction that would be suitable for this development.

2.4. Provides the greenfield runoff volume.

The greenfield runoff volume for the 1:100 year event, 6 hour storm is 14m.1m³. Calculations demonstrating this can be found in Appendix C.

2.5. Clearly states the proposed area and attenuation volume for each SuDS feature. Clarifies the site area for the proposed development. Includes the whole site area in the drainage calculations, as infiltration is not being pursued as a method of surface water discharge.

The only SUDS featured modelled within the calculations at present is the attenuation tank. For this purpose we have currently assumed 100% runoff from the roof to ensure that there is sufficient room on site for the attenuation tank in the worst case scenario. More detailed calculations will be produced at Stage 4 to confirm the full design once it has been completed. We would normally expect Surface Water

calculations and final details to be covered by a suitable pre commencement condition as we have demonstrated that surface water can be controlled on site.

There appears to be some confusion as to the site area. Please note that our Drainage Strategy only covers Site A of the multi phase development. Therefore our total site area of 2,239m² is appropriate as this is the area of Site A, as demonstrated on our drawing AC22260-ABS-XX-XX-DR-5101.

We note the requirement to include areas of greenfield within the calculations as we are not including these areas within our calculations currently as they are not directly positively drained. We have therefore updated our offsite flow rates summary sheet to include the remaining 344m² of green space to the final outflow from the site.

These calculations are included within Appendix D and demonstrate that the offsite flow rates are changed to 1.9I/s in the 1:1 year event, 2.1I/s in the 1:30 year event, and 2.2I/s in the 1:100 year event with a 40% allowance for climate change. Very small increase and still far lower than the pre development offsite flow rates. The table below is an updated version of Table 3 within the Drainage Strategy Report demonstrating the amended flow rates.

Return Period	Greenfield Runoff Rate (Is ⁻¹)	Pre Development Runoff Rate (Is ⁻¹)	Post Development Runoff Rate including uncontrolled Green Areas (Is ⁻¹)	% of Pre Development Runoff Rate
1:1 year	0.3	19.9	1.9	9.5%
1:30 year	0.8	48.9	2.1	4.3%
1:100 year	1.2	63.5	2.2	3.5%

Table 3 – Pre / Post Development Offsite Flow Rates

2.6. Demonstrates updates to the drainage calculations (detailing the changes made) to ensure the half-drain times are reduced to less than 24 hours, to ensure that the proposed drainage strategy will remain operational in the case of consecutive storm events. Demonstrates where the exceedance flows are on a drawing.

The calculations have been rerun to ensure that the 24 hour half drain time is correctly calculated. These have been included in Appendix E and demonstrate that the half drain times are all below 24 hours.

Exceedance Flow Arrows have been added to the Drainage Layout AC22260-ABS-XX-XX-DR-C-5100 which can be found in Appendix F.

2.7. Provides the maintenance tasks and strategies for the green roofs.

The green roofs will require the following basic maintenance tasks. A full list will be provided with the O&M Manual at Stage 6, once the final design is completed during Stages 4 and 5.

Drainage	Inspection Requirements	Maintenance	Inspection
Element		Requirements	Schedule
Green Roofs	Visual inspection to check for blockages to any drain channels and outlets, check for erosion within the substrate, check all components for damage, and planting for any dead areas.	Remove debris and litter, replace dead plants, remove weeds (where present), and cut any grass.	Six monthly, and after severe storms.

2.8. States a maintenance owner.

The maintenance owner will be the eventual building maintenance and management company that will be set up by Kitewood during the development to look after the building post construction during use.

2.9. Demonstrates that Thames Water has been consulted regarding the proposed connection to the combined sewer.

We have submitted a Pre Development Enquiry application with Thames Water and have received a request for further information / clarification, which has been responded to. It should be noted though, that as per our report, we have reduced the flow rate to the public sewer significantly over the current pre development situation.

Appendix A – LLFA Comments

Flood Risk Comments

Review Summary

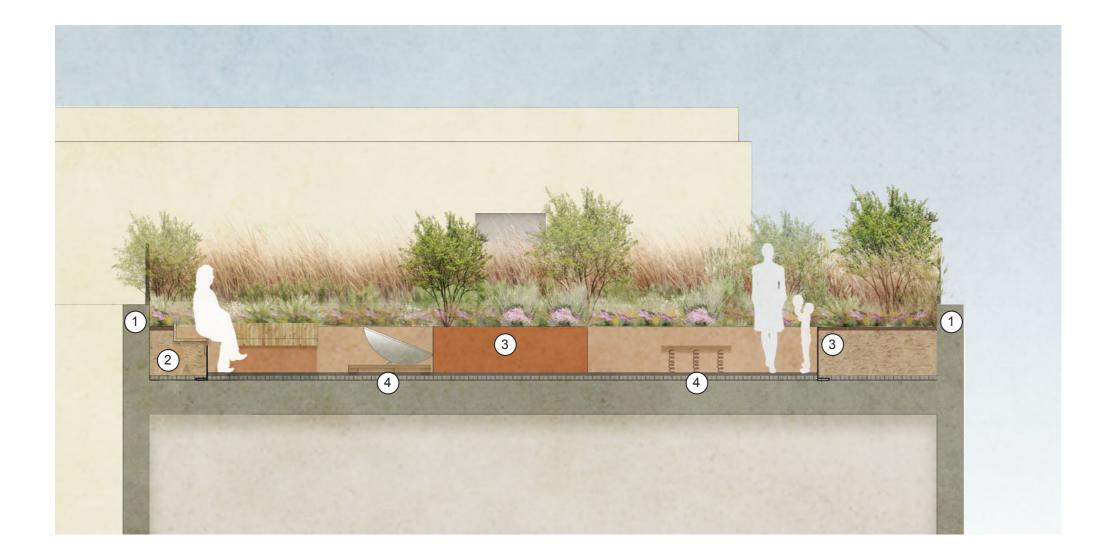
This application is proposing the following key items:

- Type of development: Major
- Flood risk: Low, Flood Zone 1
- Types of conveyance / attenuation features: Green roofs, permeable paving, attenuation tank.
- Runoff rate restriction (I/s): 2 I/s, this is greater than the greenfield rates, however provides significant betterment compared to the existing runoff rates. however within 3x greenfield rates .
- Runoff attenuation volume (m3): 159.6
- Maintenance plan: A maintenance plan has been provided, but with no tasks / frequencies for the green roofs. A maintenance owner has not been provided.

Recommendation and Requests

This application has not sufficiently demonstrated the use of the London Plan's drainage hierarchy. We object to the application for the following reasons:

- The applicant has not provided sufficient justification for the non-inclusion of rainwater harvesting techniques. The applicant should consider the use of water butts / raingardens.
- The applicant states on page 6 of the Surface Water Drainage Strategy Report that "Temporary storage will be provided within the attenuation tank to balance the volumes prior to discharge to the watercourse." However, elsewhere within the report, the proposed discharge is noted as being to the Thames Water combined sewer.
- The applicant states a proposed runoff rate of 2.0l/s in the 1 in 30-year storm. However, the calculations provided in Appendix H of the Surface Water Drainage Strategy Report show a discharge rate of 2.0l/s in the 1 in 30-year storm
- The applicant has not provided the greenfield runoff volume.
- The applicant has not clearly stated the proposed area and attenuation volume for each SuDS feature.
- The Surface Water Drainage Strategy Report lists a site area of 2,239m2. However, the application form states an area of 7,251m2.
- The drainage calculations only account for the impermeable area, and not the whole site area.
- The drainage calculations provided state that the "Half Drain Time has not been calculated as the structure is too full". The applicant is required to provide a drawing showing exceedance flows.
- The maintenance strategy does not contain the maintenance tasks and strategies for the green roofs.
- A maintenance owner has not been stated.
- Thames Water has not been consulted regarding the proposed connection to the combined sewer.


To address the above, please can the applicant submit information which:

- Demonstrates that they have considered smaller scale rainwater harvesting features.
- Confirms whether the proposed surface water discharge is to a watercourse or combined sewer, with consideration given to the statement in page 6 of the Surface Water Drainage Strategy Report.
- Ensures the proposed runoff rates listed in the report align with those detailed in the calculations.
- Provides the greenfield runoff volume.
- Clearly states the proposed area and attenuation volume for each SuDS feature. Clarifies the site area for the proposed development. Includes the whole site area in the drainage calculations, as infiltration is not being pursued as a method of surface water discharge.
- Demonstrates updates to the drainage calculations (detailing the changes made) to ensure the half-drain times are reduced to less than 24 hours, to ensure that the proposed drainage strategy will remain operational in the case of consecutive storm events. Demonstrates where the exceedance flows are on a drawing.
- Provides the maintenance tasks and strategies for the green roofs.
- States a maintenance owner.
- Demonstrates that Thames Water has been consulted regarding the proposed connection to the combined sewer.

В

KEY1Parapet edge with barrier to be
1100mm high above soil level.2Proposed steel planters with
integral seating.3Proposed steel planters4Proposed elements of age
appropriate play equipment

3.0 Landscape Proposals3.3 Sections3.3.2 Section BB

Section BB shows a typical section through the south roof terrace shared amenity space.

The design intention for this roof terrace space is to provide a visually pleasing space that incorporates elements of play whilst providing an attractive space in which all members of this new development can sit and relax.

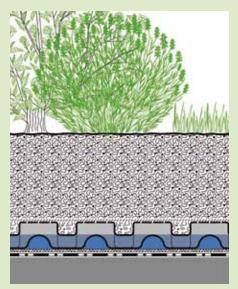
This roof terrace space is enclosed by a raised planter. Within the planter edge integral seating elements are accommodated in a number of locations.

Particular attention has been given to the south east boundary. In this location the depth and height of planting will be sufficient so as to obscure views from this level 4 amenity space towards the private rear gardens of the dwellings along Sydenham Park.

Section Location Plan

Scale 1:1000@A3

System Build-up "Roof Garden"


The "Roof Garden" is a multifunctional Green Roof build-up with high water storage. It is suitable for lawns, perennial plants, and with deeper system substrate, for shrubs and trees. The Roof Garden build-up allows a variety of design concepts, even waterfeatures. It is also possible to integrate hard landscapes, such as walkways, terraces, driveways or play areas, etc. Within the Roof Garden, it is useful to store as much rainwater as possible to reduce the need for additional watering. The spacious channels forming the underside of the Floradrain® FD 60 provide for a 40 mm deep water reservoir underneath the system substrate throughout the roof area. This water reaches the plants by capillary action and diffusion. Water storage can also be easily achieved by installing roof dam elements above the roof outlets. A roof laid at 0° fall is required to include this system, along with a suitable waterproofing membrane for such use. Inspection chambers make it possible to examine and maintain the roof dam elements at any time. With automatic irrigation, a minimum water storage can be maintained even in periods of drought.

System Build-up "Roof Garden"

Features:

- Multifunctional Green Roof System Build-up with high water retention capacity and roof dam irrigation.
- Suitable for lawn and perennials; with a deeper substrate level also for bushes, small trees etc.
- Various combinations are possible, for example with walkways, patios, driveways or playgrounds.
- Floradrain[®] FD 60 can be filled with concrete as a sub-construction for driveways without penetrating the waterproofing or interrupting the drainage.

Lawn and perennials; with a deeper substrate level, bushes and small trees

System Substrate "Roof Garden" ≥ 200 mm

Filter Sheet SF Floradrain® FD 60 with Zincolit® Plus infill Protection Mat ISM 50 Root Barrier WSB 100-PO,

if waterproofing is not root-resistant

Suitable plants for the System Build-up "Roof Garden" are available at perennial or tree nurseries.

	System Substrate "Roof Garden"	Unit big bag	ArtNo. 616101	Unit bulk	ArtNo. 616201		
	Filter Sheet SF	ArtNo . 2100 2102 2101	Dimensions ca. 2.00 m x ca. 1.00 m x ca. 2.00 m x	100.00 m	Unit 200 m ² -rc 100 m ² -ro 20 m ²		Pallet 4600 m ² 2500 m ²
	Zincolit® Plus	Unit big bag	ArtNo. 607102	Unit bulk	ArtNo. 607202	Unit silo	ArtNo. 607302
	Floradrain® FD 60	ArtNo. 3060	Dimensions ca. 1.00 m x	2.00 m	Unit 2 m²-boar	d	Pallet 100 boards
6	Protection Mat ISM 50	ArtNo. 2050	Dimensions ca. 2.00 m x	25.00 m	Unit 50 m²-roll		
	Root Barrier WSB 100-PO	ArtNo . 1084	Dimensions ca. 2.44 m x	30.50 m	Unit 74.4 m²-rc	bll	Pallet 1116 m²

Appendix C – Greenfield Runoff Volume

Abstruct Consulting Ltd		Page 1
The Highland Suite		
Great Hollanden Business Centre		
Sevenoaks Kent TN15 0SQ		Micco
Date 13/04/2023 12:51	Designed by Martinhowell	— Micro Drainage
File	Checked by	Drainage
Causeway	Source Control 2020.1.3	
Greenf	<u>ield Runoff Volume</u>	
	FSR Data	
Return Perio	d (years) 100	
Storm Durati	on (mins) 360	
	Region England and Wales	
M	5-60 (mm) 20.000 Ratio R 0.441	
Areal Reducti		
	Area (ha) 0.190	
	SAAR (mm) 631 CWI 92.580	
	Urban 0.750	
	SPR 0.000	
	Results	
	Results	
	centage Runoff (%) 12.32	
Greenfield	Runoff Volume (m³) 14.084	

Appendix D – Offsite Flow Rate Calculations Sheet

ctural & Civil Engineers	Project: Willow Way, S	ydenham	Job No: AC22260
/ Post Development Offsite Flows	^{ву:} MH	Date: 16/12/2022	Sheet No: 1 of 1
Pre Development Offsite Flows			Rev P02
Impermeable area = 2,239 m ²			
Micro Drainage Rainfall Profiles1:1 year, 15 minute storm32.0121:30 year, 15 minute storm78.5801:100 year, 15 minute storm102.1021:100 year, 6 hour storm10.026			
Offsite Flow Rates 1:1 year, 15 minute storm 19.9 Is ⁻¹ 1:30 year, 15 minute storm 48.9 Is ⁻¹ 1:100 year, 15 minute storm 63.5 Is ⁻¹			
Offsite Flow Volume 1:100 year, 6 hour storm			
Greenfield Runoff Rates			
IH 124 gives greenfield runoff rates for a 50ha site, g interpolate down to the site size (2,239m ² drained are 1 year 30 year			-
IH 124 (50ha) 68.6 ls-1 182.9 ls-2 Site Specific (2,239m²) 0.3 ls-1 0.8 ls-2	1 257.4 ls-1		
Post Development Offsite Flows			
Post Development Offsite Flows <u>Micro Drainage Model Results</u>			
Post Development Offsite FlowsMicro Drainage Model ResultsImpermeable area = $1,895 \text{ m}^2$ 1:1 year event 1.9 ls^{-1} 1:30 year event 2.0 ls^{-1}			
Post Development Offsite FlowsMicro Drainage Model ResultsImpermeable area = $1,895$ m²1:1 year event1:30 year event1:100 +40% allowance for c.c.2.0 ls ⁻¹ Remaining Uncontrolled Greenfield Runoff		Flow Rates L.9 Is ⁻¹ 2.1 Is ⁻¹ 2.2 Is ⁻¹	

Е

Abstruct Consulting Ltd	Page 1	
The Highland Suite	Willow Way, Sydenham	
Great Hollanden Business Centre	AC22260-ABS-XX-XX-CA-C-5502	
Sevenoaks Kent TN15 OSQ	P01	Micro
Date 16/12/2022	Designed by MH	Drainage
File AC22260-ABS-XX-XX-CA-C	Checked by	Diamage
Causeway	Network 2020.1.3	

<u>Time Area Diagram for Storm</u>

Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)
0-4	0.125	4-8	0.064

Total Area Contributing (ha) = 0.190

Total Pipe Volume $(m^3) = 5.465$

Abstruct Consulting Ltd	Page 2	
The Highland Suite	Willow Way, Sydenham	
Great Hollanden Business Centre	AC22260-ABS-XX-XX-CA-C-5502	
Sevenoaks Kent TN15 OSQ	P01	Micro
Date 16/12/2022	Designed by MH	Drainage
File AC22260-ABS-XX-XX-CA-C	Checked by	Diamada
Causeway	Network 2020.1.3	L

Existing Network Details for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type
S1.000	18.840	0.250	75.4	0.013	5.00	0.0	0.600	0	150	Pipe/Conduit
S2.000	14.214	0.175	81.2	0.011	5.00	0.0	0.600	0	150	Pipe/Conduit
S1.001 S1.002	12.660 3.015		63.3 40.2	0.012 0.006	0.00		0.600	0 0		Pipe/Conduit Pipe/Conduit
S3.000	21.424	0.525	40.8	0.022	5.00	0.0	0.600	0	150	Pipe/Conduit
S1.003	16.656	0.200	83.3	0.014	0.00	0.0	0.600	0	225	Pipe/Conduit
S4.000	25.107	0.725	34.6	0.024	5.00	0.0	0.600	0	150	Pipe/Conduit
S1.004	21.200	0.100	212.0	0.022	0.00	0.0	0.600	0	225	Pipe/Conduit
S5.000 S5.001	24.408 9.953		48.8 49.8	0.027 0.019	5.00 0.00		0.600 0.600	0 0		Pipe/Conduit Pipe/Conduit
S1.005	23.606	0.200	118.0	0.021	0.00	0.0	0.600	0	150	Pipe/Conduit
S6.000	34.413	0.450	76.5	0.000	5.00	0.0	0.600	0	150	Pipe/Conduit

Network Results Table

	PN	US/IL (m)	Σ I.Area (ha)				-	
S	1.000	57.900	0.013		0.0	1.16	20.5	
S	2.000	57.900	0.011		0.0	1.12	19.7	
		57.650 57.450	0.035 0.042			1.27 1.59		
S	3.000	57.900	0.022		0.0	1.58	27.9	
S	1.003	57.300	0.078		0.0	1.43	57.0	
S	4.000	57.900	0.024		0.0	1.72	30.3	
S	1.004	57.100	0.123		0.0	0.89	35.5	
S	5.000	57,900	0.027		0.0	1.44	25.5	
		57.400				1.43		
S	1.005	57.000	0.190		0.0	0.92	16.3	
S	6.000	57.800	0.000		0.0	1.15	20.3	
		©1	982-2020) Innc	ovyze			

Abstruct Consulting Ltd	Page 3	
The Highland Suite	Willow Way, Sydenham	
Great Hollanden Business Centre	AC22260-ABS-XX-XX-CA-C-5502	
Sevenoaks Kent TN15 OSQ	P01	Micro
Date 16/12/2022	Designed by MH	Drainage
File AC22260-ABS-XX-XX-CA-C	Checked by	Diamada
Causeway	Network 2020.1.3	

Existing Network Details for Storm

PN	I	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD SECT		Section Type
s7.0	000	7.230	0.150	48.2	0.000	5.00	0.0	0.600	0	150	Pipe/Conduit
		19.119 2.121		38.2 42.4	0.000	0.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit
S1.0	06	7.950	0.100	79.5	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit

<u>Network Results Table</u>

PN	US/IL (m)		Σ Base Flow (l/s)		-
s7.000	57.500	0.000	0.0	1.45	25.7
S6.001 S6.002	57.350 56.850	0.000		1.63 1.55	
S1.006	56.800	0.190	0.0	1.13	19.9

The Highland Suite			W	illow Way	, Sydenha	am	
Great Hollanden Busi:	ness	Centr		- C22260-AB	-		
	5 0 S Q			01			Micco
Date 16/12/2022				esigned b	v MH		— Micro
File AC22260-ABS-XX-3	XX-CA	-0-		hecked by			Drainac
				etwork 20			
Causeway			IN	etwork 20	20.1.3		
		۸ro	- C11	mmary for	c Storm		
		ALE	<u>a su</u>	nunary ior	<u>storm</u>		
Pipe	PIMP	PTMP	PTMP	Gross	Imp.	Pipe Total	
-				Area (ha)	-	(ha)	
) User		100				
) User		100				
	l User 2 User		100 100				
) User		100				
	3 User		100				
4.000) User	-	100				
1.004	4 User	-	100	0.022	0.022	0.022	
) User		100				
	l User		100				
	5 User		100				
6.000 7.000			100 100				
6.00			100				
6.003			100				
1.00							
				Total			
				0.190	0.190	0.190	
Outfa	11 0	utfall	. c. :	Level I. Le		D,L W	
Outfa Pipe Nur	ll O mber	utfall Name	. c. :	Level I. Le m) (m	evel Min) I. Lev (m)	D,L W rel (mm) (mm)	
Outfa Pipe Nur	11 O mber .006	utfall Name Sewer	c. : (Level I. Le m) (m 8.000 56.	evel Min () I. Lev (m) .700 0.0	D,L W vel (mm) (mm)	
Outfa Pipe Nur	11 O mber .006	utfall Name Sewer	c. : (Level I. Le m) (m	evel Min () I. Lev (m) .700 0.0	D,L W vel (mm) (mm)	
Outfa Pipe Nu S1 Volumetric Areal Redu Hot	11 O mber .006 <u>Si</u> Runoff start start ct Leve peff (0	utfall Name Sewer <u>mulat</u> E Coef Facto (mins el (mm Global	f 0.7 r 1.0) 0.5	Level I. Le m) (m 8.000 56. <u>Criteria</u> 50 Addit 00 M 0 0 Flow pe 500	evel Min) I. Lev (m) .700 0.0 for Stor .ional Flow HADD Factor er Person p	D,L W vel (mm) (mm)	orage 2.000 cient 0.800 /day) 0.000 mins) 60
Outfai Pipe Num S1 Volumetric Areal Redu Hot Hot Star Manhole Headloss Co Foul Sewage per h Number of Number of	11 O mber .006 <u>Si</u> Runoff start st Leve beff (0 hectare Input of Onl	utfall Name Sewer E Coef Facto (mins el (mm Global e (1/s Hydro ine Co	f 0.7 r 1.0) 0.5) 0.5) 0.5	Level I. Le m) (m 8.000 56. <u>Criteria</u> 50 Addit 00 M 0 Flow pe 500 100 100 100 100 100 100	evel Min) I. Lev (m) .700 0.0 for Stor .ional Flow HADD Factor or Person p Outp r of Storag r of Time/F	D,L W rel (mm) (mm) 000 0 0 rm - % of Total * 10m ³ /ha St Inlet Coeffie er Day (1/per Run Time (s	orage 2.000 cient 0.800 /day) 0.000 mins) 60 mins) 1 1 0
Outfa: Pipe Num S1 Volumetric Areal Redu Hot Hot Star Manhole Headloss Co Foul Sewage per Mumber of Number of Number of	11 O mber .006 Si Runoff action Start t Leve beff (C hectare Input of Onl f Offl	utfall Name Sewer <u>mulat</u> Coef Facto (mins a) (mm Global a) (1/s Hydro ine Co	f 0.7 f 0.7 f 0.7 f 1.0)) 0.5) 0.5 optroi	Level I. Le m) (m 8.000 56. <u>Criteria</u> 50 Addit 00 M 0 Flow pe 500 100 100 100 100 100 100	avel Min) I. Lex (m) .700 0.0 for Stor .ional Flow ADD Factor er Person p Outp r of Storag r of Time/P r of Real I	D,L W rel (mm) (mm) 000 0 0 rm - % of Total * 10m ³ /ha St Inlet Coeffie er Day (1/per Run Time (structures rea Diagrams	orage 2.000 cient 0.800 /day) 0.000 mins) 60 mins) 1 1 0
Outfai Pipe Num S1 Volumetric Areal Redu Hot Hot Star Manhole Headloss Co Foul Sewage per M Number of Number o Number o	11 O mber .006 Si Runoff start start t Leve beff (C hectare Input of Onl f Offl	utfall Name Sewer Mulat E Coef Facto (mins el (mm Elobal e (1/s Hydro ine Co ine Co ine Co Synth el s) on Eng m)	f 0.7 f 0.7 f 0.7 f 0.7 f 0.7 f 1.0)) 0.5) 0.0 portroi	Level I. Le m) (m 8.000 56. Criteria 50 Addit 50 Addit 00 M 0 Flow pe 500 00 100 100 100 100 100 100 100 100	avel Min) I. Lev (m) .700 0.0 for Stor 	D,L W rel (mm) (mm) 000 0 0 rm - % of Total * 10m ³ /ha St Inlet Coeffie er Day (1/per Run Time (structures rea Diagrams	orage 2.000 cient 0.800 /day) 0.000 mins) 60 mins) 1 1 0 0 5ummer 0.750 0.840
Outfai Pipe Num S1 Volumetric Areal Redu Hot Hot Star Manhole Headloss Co Foul Sewage per M Number of Number o Number o	11 O mber .006 Si Runoff action Start t Leve beff (C bectare Input of Onl f Offl ll Mod (year Regi -60 (m	utfall Name Sewer Mulat E Coef Facto (mins el (mm Elobal e (1/s Hydro ine Co ine Co Synth el s) on Eng m) R	c. : c. : f 0.7 f 0.7 r 1.0) 0.5) 0.5) 0.5 ontro: etic	Level I. Le m) (m 3.000 56. Criteria 50 Addit 50 Addit 00 M 0 Flow pe 500 00 100 100 100 100 100 100 100 100	avel Min) I. Lev (m) .700 0.0 for Stor .ional Flow MADD Factor er Person p Outp r of Storag r of Storag r of Real I L Details F Storm Dura	D,L W rel (mm) (mm) 000 0 0 m - % of Total * 10m ³ /ha St Inlet Coeffie er Day (1/per Run Time (: ut Interval (: rea Diagrams 'ime Controls Profile Type S Cv (Summer) Cv (Winter)	orage 2.000 cient 0.800 /day) 0.000 mins) 60 mins) 1 1 0 0 5ummer 0.750 0.840

The Highland a Great Holland Sevenoaks Ke Date 16/12/20 File AC22260-2 Causeway <u>Hydro-Bra</u>	en Busin nt TN15 22 ABS-XX-X	0SQ X-CA-C	e AC22260 P01 Designe . Checked	by 2020.1.3	K-CA-C-55	N	Aicro Drainag
Sevenoaks Ke Date 16/12/20 File AC22260-2 Causeway	nt TN15 22 ABS-XX-X	0SQ X-CA-C	P01 Designe Checked Network	d by MH by 2020.1.3		N	
Date 16/12/20 Tile AC22260-2 Causeway	22 ABS-XX-X	X-CA-C	Designe . Checked Network	by 2020.1.3	<u>m</u>		
'ile AC22260-	ABS-XX-X		. Checked Network	by 2020.1.3	<u>m</u>		
Causeway			Network	2020.1.3	<u>m</u>		lidii idy
	ake® Opt:	Onlin	Network	2020.1.3	<u>m</u>		
<u>Hydro-Bra</u>	ake® Opt:	<u>Onlir</u>	<u>e Control</u>	s for Stor	<u>`m</u>		
<u>Hydro-Bra</u>	ake® Opt:						
		<u>imum Manh</u>	ole: HB1,	DS/PN: S1	.005, Vol	ume (m³):	2.7
	_	Ūr	nit Referenc	e MD-SHE-007	70-2000-080	0-2000	
			sign Head (m			0.800	
		Desig	gn Flow (l/s			2.0	
			Flush-Flo	™ e Minimise		ulated	
			Applicatio		-	Surface	
		Su	mp Availabl			Yes	
			Diameter (mm			70	
7.	Ainimum O		ert Level (m Diameter (mm			57.000 100	
I.		-	Diameter (mm			1200	
		Control	Points	Head (m) F	'low (l/s)		
	Des	ign Point	(Calculated)		2.0		
			Flush-Flo™ Kick-Flo®		2.0		
	Mea	n Flow ove:	r Head Range		1.7		
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flc	otimum® be	utilised t	then these s	torage routi	ing calcula	tions will	be
0.100	1.8	1.200	2.4	3.000	3.7	7.000	5.5
0.200	2.0	1.400	2.6	3.500	3.9	7.500	5.6
0.300	2.0	1.600	2.7	4.000	4.2	8.000	5.8
0.400 0.500	1.9	1.800	2.9 3.0	4.500 5.000	4.4	8.500 9.000	6.0 6.2
0.600	1.6	2.000 2.200	3.0	5.000	4.7	9.000	6.2 6.3
0.800	2.0	2.400	3.3	6.000	5.1		5.5
1.000	2.2	2.600	3.4	6.500	5.3		

Abstruct Consulting Ltd		Page 6
The Highland Suite	Willow Way, Sydenham	
Great Hollanden Business Centre	AC22260-ABS-XX-XX-CA-C-5502	
Sevenoaks Kent TN15 OSQ	P01	Micro
Date 16/12/2022	Designed by MH	Drainage
File AC22260-ABS-XX-XX-CA-C	Checked by	Diamage
Causeway	Network 2020.1.3	1

Storage Structures for Storm

Cellular Storage Manhole: HB1, DS/PN: S1.005

Invert Level (m) 57.050 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	132.4	0.0	0.751	0.0	0.0
0.750	132.4	0.0			

	ct Cor	nsulti	ing	Ltd						Page	7
'I'he Hi	ghland	d Suit	ce			Willow Wa	ay, S	Sydenham			
Great	Hollar	nden E	Busi	ness C	entre	AC22260-A	ABS->	XX-XX-CA	-C-5502		
Seveno	aks H	Kent	TN1	5 0.SO		P01				Mic	
Date 1				<u>r</u>		Designed	hv N	11		— Mic	IU
File A	-,, -		_vv_	vv_ca_		Checked k	-	111		Dra	inage
		J-ADS-	-~~-	AA-CA-				1 0			
Causew	ay					Network 2	2020.	1.3			
<u>1 yea</u> :	<u>r Retı</u>	<u>irn Pe</u>	erio	<u>d Summ</u>	ary of	<u>Critical</u> for Stor		<u>ilts by</u>	<u>Maximum I</u>	Level (Ra	<u>ank 1)</u>
		Areal	Redi	uction H		ulation Cr: .000 Add			% of Total	l Flow 0.0	00
									10m³/ha St		
Ма		Headlo	ss Co	oeff (Gi	L (mm) Lobal) 0 (l/s) 0	.500 Flow j	per P		let Coeffie Day (l/per		
		Num	nber	of Onli	ne Contr	ols 1 Numb	ber of	Time/Are	Structures a Diagrams me Controls	0	
					Synthe+	ic Rainfal	Ll Det	ails			
			Rain	fall Mo			FSR		R 0.441		
				Reg	ion Engl	and and Wa	ales C	Cv (Summer) 0.750		
				M5-60 (mm)	20.	000 0	Cv (Winter) 0.840		
	M		F							200 0	
	1412	argin i	COT F		sk Warni	-	5 500	and Incre	ment (Exte	300.0	
				All	-	Status	.) Sec	ona incre	Ment (Exte	OFF	
						Status				ON	
					Inertia	Status				ON	
				Profile	e(s)				Summer and	Winter	
		Dura	atior	Profile n(s) (mi		15, 30, 60), 120	, 180, 24	Summer and 0, 360, 48		
				n(s) (mi	ns)	15, 30, 60), 120	, 180, 24	0, 360, 48 720, 96	0, 600, 0, 1440	
	Reti	urn Pei	riod	n(s) (mi (s) (yea	ns) ms)	15, 30, 60), 120	, 180, 24	0, 360, 48 720, 96 1,	0, 600, 0, 1440 30, 100	
	Reti	urn Pei	riod	n(s) (mi	ns) ms)	15, 30, 60), 120	, 180, 24	0, 360, 48 720, 96 1,	0, 600, 0, 1440	
	Reti	urn Pei	riod	n(s) (mi (s) (yea	ns) ms)	15, 30, 60), 120	, 180, 24	0, 360, 48 720, 96 1,	0, 600, 0, 1440 30, 100	
	Ret US/MH	ırn Pei Clir	riod	n(s) (mi (s) (yea Change	ns) ms)				0, 360, 48 720, 96 1,	0, 600, 0, 1440 30, 100 , 0, 40	Water Level
PN		ırn Pei Clir	riod	n(s) (mi (s) (yea Change Return	ns) ars) (%)	First ()	X)		0, 360, 48 720, 96 1, 0	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	
	US/MH Name	ırn Per Clir Stor	riod mate rm	n(s) (mi (s) (yea Change Return Period	ns) (%) Climate Change	First () Surchard	X) ge	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m)
PN \$1.000 \$2.000	US/MH Name S8	ırn Per Clir Sto r 15 Win	riod mate rm nter	n(s) (mi (s) (yea Change Return Period	ns) ars) (%) Climate Change +0%	First ()	X) ge mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level
S1.000	US/MH Name S8 RE7.1	ırn Per Clir Sto r 15 Win	riod mate rm nter nter	n(s) (mi (s) (yea Change Return Period	.ns) ars) (%) Climate Change +0% +0%	First () Surchar 100/15 Sun	X) ge mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931
S1.000 S2.000	US/MH Name S8 RE7.1 S7	ırn Pei Clir Sto i 15 Win 15 Win	riod mate rm nter nter	n(s) (mi (s) (yea Change Return Period 1 1	.ns) ars) (%) Climate Change +0% +0% +0%	First (: Surchar 100/15 Sun 100/15 Sun	X) ge mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929
S1.000 S2.000 S1.001 S1.002 S3.000	US/MH Name S8 RE7.1 S7 S6 RE5.1	Irn Per Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win	riod mate rm nter nter nter nter nter	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1	.ns) ars) (%) Climate Change +0% +0% +0% +0% +0% +0%	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935
S1.000 S2.000 S1.001 S1.002 S3.000 S1.003	US/MH Name S8 RE7.1 S7 S6 RE5.1 S5	2170 Per Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win	riod mate rm nter nter nter nter nter nter	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1	ns) (%) Climate Change +0% +0% +0% +0% +0% +0% +0%	First (: Surchard 100/15 Sun 100/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369
S1.000 S2.000 S1.001 S1.002 S3.000 S1.003 S4.000	US/MH Name 88 RE7.1 57 86 RE5.1 55 RE4.1	2170 Per Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win	riod mate nter nter nter nter nter nter nter	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1	ns) ars) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.369 57.934
S1.000 S2.000 S1.001 S1.002 S3.000 S1.003 S4.000 S1.004	US/MH Name 88 RE7.1 57 86 RE5.1 55 RE4.1 CP4	2170 Per Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win	riod mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1	ns) ars) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0%	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.369 57.934 57.214
S1.000 S2.000 S1.001 S1.002 S3.000 S1.003 S4.000 S1.004 S5.000	US/MH Name 88 RE7.1 57 86 RE5.1 55 RE4.1 CP4 S3	2111 Per Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win	riod mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1 1	ns) ars) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur	X) ge mmer mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.934 57.214 57.214 57.940
\$1.000 \$2.000 \$1.001 \$1.002 \$3.000 \$1.003 \$4.000 \$1.004 \$5.000 \$5.001	US/MH Name 88 RE7.1 57 S6 RE5.1 55 RE4.1 CP4 S3 S2	Stor Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win	riod mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1 1 1 1	<pre>nns) ars) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%</pre>	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 30/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.929 57.699 57.509 57.935 57.935 57.369 57.934 57.214 57.214 57.940 57.454
\$1.000 \$2.000 \$1.001 \$1.002 \$3.000 \$1.003 \$4.000 \$1.004 \$5.000 \$5.001 \$1.005	US/MH Name S8 RE7.1 S7 S6 RE5.1 S5 RE4.1 CP4 S3 S2 HB1	Stor Clir Stor 15 Win 15 Win 16 Win	riod mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>nns) ars) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%</pre>	First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur	X) ge mmer mmer mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.934 57.214 57.214 57.940 57.454 57.163
\$1.000 \$2.000 \$1.001 \$1.002 \$3.000 \$1.003 \$4.000 \$1.004 \$5.000 \$5.001 \$1.005 \$6.000	US/MH Name S8 RE7.1 S7 S6 RE5.1 S5 RE4.1 CP4 S3 S2 HB1 F4	Stor Clir Stor 15 Win 15 Sur	riod mate mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>nns) ars) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%</pre>	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 30/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.934 57.214 57.940 57.454 57.163 57.800
\$1.000 \$2.000 \$1.001 \$1.002 \$3.000 \$1.003 \$4.000 \$1.004 \$5.000 \$5.001 \$1.005 \$6.000 \$7.000	US/MH Name S8 RE7.1 S7 S6 RE5.1 S5 RE4.1 CP4 S3 S2 HB1 F4 F3	Stor Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Sur 15 Sur 15 Sur	riod mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>.ns) ars) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%</pre>	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 30/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.934 57.214 57.940 57.454 57.163 57.800 57.500
\$1.000 \$2.000 \$1.001 \$1.002 \$3.000 \$1.003 \$4.000 \$1.004 \$5.000 \$5.001 \$1.005 \$6.000	US/MH Name S8 RE7.1 S7 S6 RE5.1 S5 RE4.1 CP4 S3 S2 HB1 F4 F3 F2	Stor Clir Stor 15 Win 15 Sur	riod mate mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>nns) ars) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%</pre>	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 30/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.934 57.214 57.940 57.454 57.454 57.163 57.800
\$1.000 \$2.000 \$1.001 \$1.002 \$3.000 \$1.003 \$4.000 \$1.004 \$5.000 \$5.001 \$1.005 \$6.000 \$7.000 \$6.001	US/MH Name S8 RE7.1 S7 S6 RE5.1 S5 RE4.1 CP4 S3 S2 HB1 F4 F3 F2 F1	Stor Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Sur 15 Sur 15 Sur 15 Sur	riod mate mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>nns) ars) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%</pre>	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 30/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.934 57.214 57.214 57.214 57.454 57.454 57.163 57.800 57.500 57.350
\$1.000 \$2.000 \$1.001 \$1.002 \$3.000 \$1.003 \$4.000 \$1.004 \$5.000 \$5.001 \$1.005 \$6.000 \$7.000 \$6.001 \$6.002	US/MH Name S8 RE7.1 S7 S6 RE5.1 S5 RE4.1 CP4 S3 S2 HB1 F4 F3 F2 F1	Stor Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Sur 15 Sur 15 Sur 15 Sur 15 Sur 15 Sur	riod mate mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>Ins) Ins) Ins) Ins) Ins) Ins) Ins) Ins)</pre>	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 30/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.934 57.214 57.214 57.214 57.454 57.454 57.163 57.800 57.500 57.350 56.850
\$1.000 \$2.000 \$1.001 \$1.002 \$3.000 \$1.003 \$4.000 \$1.004 \$5.000 \$5.001 \$1.005 \$6.000 \$7.000 \$6.001 \$6.002	US/MH Name S8 RE7.1 S7 S6 RE5.1 S5 RE4.1 CP4 S3 S2 HB1 F4 F3 F2 F1	Stor Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Sur 15 Sur 15 Sur 15 Sur 15 Sur 15 Sur	riod mate mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>Ins) Ins) Ins) Ins) Ins) Ins) Ins) Ins)</pre>	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 30/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer mmer mmer	First (Y)	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.934 57.214 57.214 57.214 57.454 57.454 57.163 57.800 57.500 57.350 56.850
\$1.000 \$2.000 \$1.001 \$1.002 \$3.000 \$1.003 \$4.000 \$1.004 \$5.000 \$5.001 \$1.005 \$6.000 \$7.000 \$6.001 \$6.002	US/MH Name S8 RE7.1 S7 S6 RE5.1 S5 RE4.1 CP4 S3 S2 HB1 F4 F3 F2 F1	Stor Clir Stor 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Win 15 Sur 15 Sur 15 Sur 15 Sur 15 Sur 15 Sur	riod mate mate nter nter nter nter nter nter nter nt	n(s) (mi (s) (yea Change Return Period 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>Ins) Ins) Ins) Ins) Ins) Ins) Ins) Ins)</pre>	First () Surchard 100/15 Sun 100/15 Sun 100/15 Sun 30/15 Sun 100/15 Sun	X) ge mmer mmer mmer mmer nmer nter	First (Y) Flood	0, 360, 48 720, 96 1, 0 First (Z)	0, 600, 0, 1440 30, 100 , 0, 40 Overflow	Level (m) 57.931 57.929 57.699 57.509 57.935 57.369 57.934 57.214 57.214 57.214 57.454 57.454 57.163 57.800 57.500 57.350 56.850

Abstruct Consulting Ltd		Page 8
The Highland Suite	Willow Way, Sydenham	
Great Hollanden Business Centre	AC22260-ABS-XX-XX-CA-C-5502	
Sevenoaks Kent TN15 OSQ	P01	Micro
Date 16/12/2022	Designed by MH	Drainage
File AC22260-ABS-XX-XX-CA-C	Checked by	Diamarje
Causeway	Network 2020.1.3	

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)		Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S8	-0.119	0.000	0.09			1.8	OK	
S2.000	RE7.1	-0.121	0.000	0.08			1.5	OK	
S1.001	s7	-0.101	0.000	0.23			4.7	OK	
S1.002	S6	-0.091	0.000	0.32			5.6	OK	
S3.000	RE5.1	-0.115	0.000	0.12			3.2	OK	
S1.003	S5	-0.156	0.000	0.20			10.4	OK	
S4.000	RE4.1	-0.116	0.000	0.12			3.4	OK	
S1.004	CP4	-0.111	0.000	0.50			16.3	OK	
S5.000	S3	-0.110	0.000	0.16			3.9	OK	
S5.001	s2	-0.096	0.000	0.27			6.1	OK	
S1.005	HB1	0.013	0.000	0.13		71	1.9	SURCHARGED	
S6.000	F4	-0.150	0.000	0.00			0.0	OK	
S7.000	F3	-0.150	0.000	0.00			0.0	OK	
S6.001	F2	-0.150	0.000	0.00			0.0	OK	
S6.002	F1	-0.150	0.000	0.00			0.0	OK	
S1.006	C1	-0.117	0.000	0.11			1.9	OK	

The Highlan	nsulting :	Ĺtd					Page	9
	d Suite		V	Villow Way,	Sydenham			
Great Holla	nden Busi	ness Ce		AC22260-ABS-		C-5502		
Sevenoaks				201				
Date 16/12/				Designed by	MII		— Mici	
, ,					МН		Drai	nage
File AC2226	U-ABS-XX-	XX-CA-C		Checked by				
Causeway			1	Jetwork 2020	.1.3			
<u>30 year Ret</u>	<u>curn Perio</u>	<u>d Summa</u>	-	<u>Critical Re</u> <u>for Storm</u>	sults by :	<u>Maximum I</u>	Jevel (Ra	<u>ank 1)</u>
	Hot Hot Star Headloss Co Sewage per h	Start (m et Level peff (Glo nectare (ctor 1. dins) (mm) (mm) (bal) 0. 1/s) 0.	500 Flow per H	nal Flow -) Factor * Inl Person per	10m³/ha Ste et Coeffice Day (1/per	orage 2.00 cient 0.80 /day) 0.00	00 00
	Number o	of Online f Offline	e Contro e Contro Synthet:	ols 1 Number o ols 0 Number o <u>ic Rainfall De</u>	f Time/Area f Real Time <u>tails</u>	Diagrams Controls	0	
		fall Mode Regio M5-60 (mn	on Engla	and and Wales	Ratio F Cv (Summer) Cv (Winter)	0.750		
M	largin for F			-			00.0	
		Ana	-	imestep 2.5 Se	cond Increm	ent (Exten		
				Status			OFF	
			DVD Inertia	Status			ON ON	
		-	Inercia	Status			ON	
		Profile(: (s) (min:	,	15, 30, 60, 12		ummer and , 360, 480 720, 960	, 600,	
		s) (year				-	0, 100 0, 40	
Ret	curn Period(Climate	Change (• /					
	Climate	-					0	Water
Ret US/MH PN Name	Climate	-	Climate		First (Y) Flood	First (Z) Overflow	Overflow Act.	
US/MH PN Name	Climate Storm	Return (Period	Climate Change	Surcharge	Flood			Level (m)
US/MH PN Name S1.000 S8	Climate Storm 15 Winter	Return (Period 30	Climate Change +0%	Surcharge	Flood			Level (m) 57.949
US/MH PN Name S1.000 S8 S2.000 RE7.1	Climate Storm 15 Winter 15 Winter	Return (Period 30 30	Climate Change +0% +0%	Surcharge 100/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.946
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7	Climate Storm 15 Winter 15 Winter 15 Winter	Return (Period 30 30 30	Climate Change +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.946 57.736
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter	Return (Period 30 30 30	Climate Change +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.946 57.736 57.560
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7 S1.002 S6	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Return (Period 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer	Flood			Level (m) 57.946 57.946 57.736 57.560 57.956
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7 S1.002 S6 S3.000 RE5.1	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Return (Period 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.949 57.730 57.560 57.950 57.451
US/MH PN Name \$1.000 \$8 \$2.000 \$87.1 \$1.001 \$7 \$1.002 \$6 \$3.000 \$85.1 \$1.003 \$5 \$4.000 \$84.1	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Return (Period 30 30 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.949 57.730 57.560 57.560 57.950 57.451 57.955
US/MH PN Name \$1.000 \$8 \$2.000 \$87.1 \$1.001 \$7 \$1.002 \$6 \$3.000 \$85.1 \$1.003 \$5 \$4.000 \$84.1	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 18 Winter	Return (Period 30 30 30 30 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer	Flood			Leve: (m) 57.949 57.949 57.560 57.560 57.959 57.455 57.959 57.404
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7 S1.002 S6 S3.000 RE5.1 S1.003 S5 S4.000 RE4.1 S1.004 CP4 S5.000 S3 S5.001 S2	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 15 Winter 15 Winter	Return (Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 100/15 Summer	Flood			Leve: (m) 57.949 57.949 57.560 57.560 57.959 57.451 57.959 57.404 57.960 57.49
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7 S1.002 S6 S3.000 RE5.1 S1.003 S5 S4.000 RE4.1 S1.004 CP4 S5.000 S3 S5.001 S2 S1.005 HB1	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 15 Winter 15 Winter 180 Winter	Return (Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer	Flood			Level (m) 57.949 57.949 57.730 57.560 57.950 57.452 57.404 57.960 57.492 57.402
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7 S1.002 S6 S3.000 RE5.1 S1.003 S5 S4.000 RE4.1 S1.004 CP4 S5.001 S2 S1.005 HB1 S6.000 F4	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Return (Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.946 57.736 57.560 57.451 57.956 57.404 57.966 57.404 57.401 57.800
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7 S1.002 S6 S3.000 RE5.1 S1.003 S5 S4.000 RE4.1 S1.004 CP4 S5.001 S2 S1.005 HB1 S6.000 F4 S7.000 F3	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Summer 15 Summer	Return (Period) 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.946 57.736 57.560 57.451 57.955 57.404 57.966 57.401 57.800 57.500
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7 S1.002 S6 S3.000 RE5.1 S1.003 S5 S4.000 RE4.1 S1.004 CP4 S5.001 S2 S1.005 HB1 S6.000 F3 S6.001 F2	Climate Storm 15 Winter 15 Summer 15 Summer 15 Summer	Return (Period) 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.940 57.730 57.560 57.451 57.955 57.404 57.966 57.401 57.800 57.500 57.350
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7 S1.002 S6 S3.000 RE5.1 S1.003 S5 S4.000 RE4.1 S1.004 CP4 S5.001 S2 S1.005 HB1 S6.000 F3 S6.001 F2 S6.002 F1	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 15 Winter 15 Winter 15 Winter 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	Return (Period) 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.946 57.736 57.560 57.451 57.955 57.404 57.966 57.497 57.401 57.800 57.500 57.350 57.350 56.850
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7 S1.002 S6 S3.000 RE5.1 S1.003 S5 S4.000 RE4.1 S1.004 CP4 S5.001 S2 S1.005 HB1 S6.000 F3 S6.001 F2 S6.002 F1	Climate Storm 15 Winter 15 Summer 15 Summer 15 Summer	Return (Period) 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.946 57.736 57.560 57.956 57.451 57.955 57.404 57.966 57.497 57.401 57.800 57.500 57.350
US/MH PN Name S1.000 S8 S2.000 RE7.1 S1.001 S7 S1.002 S6 S3.000 RE5.1 S1.003 S5 S4.000 RE4.1 S1.004 CP4 S5.001 S2 S1.005 HB1 S6.000 F3 S6.001 F2 S6.002 F1	Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 15 Winter 15 Winter 15 Winter 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	Return (Period) 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 100/15 Summer	Flood			Level (m) 57.949 57.946 57.736 57.560 57.451 57.955 57.404 57.966 57.497 57.401 57.800 57.500 57.350 57.350 56.850

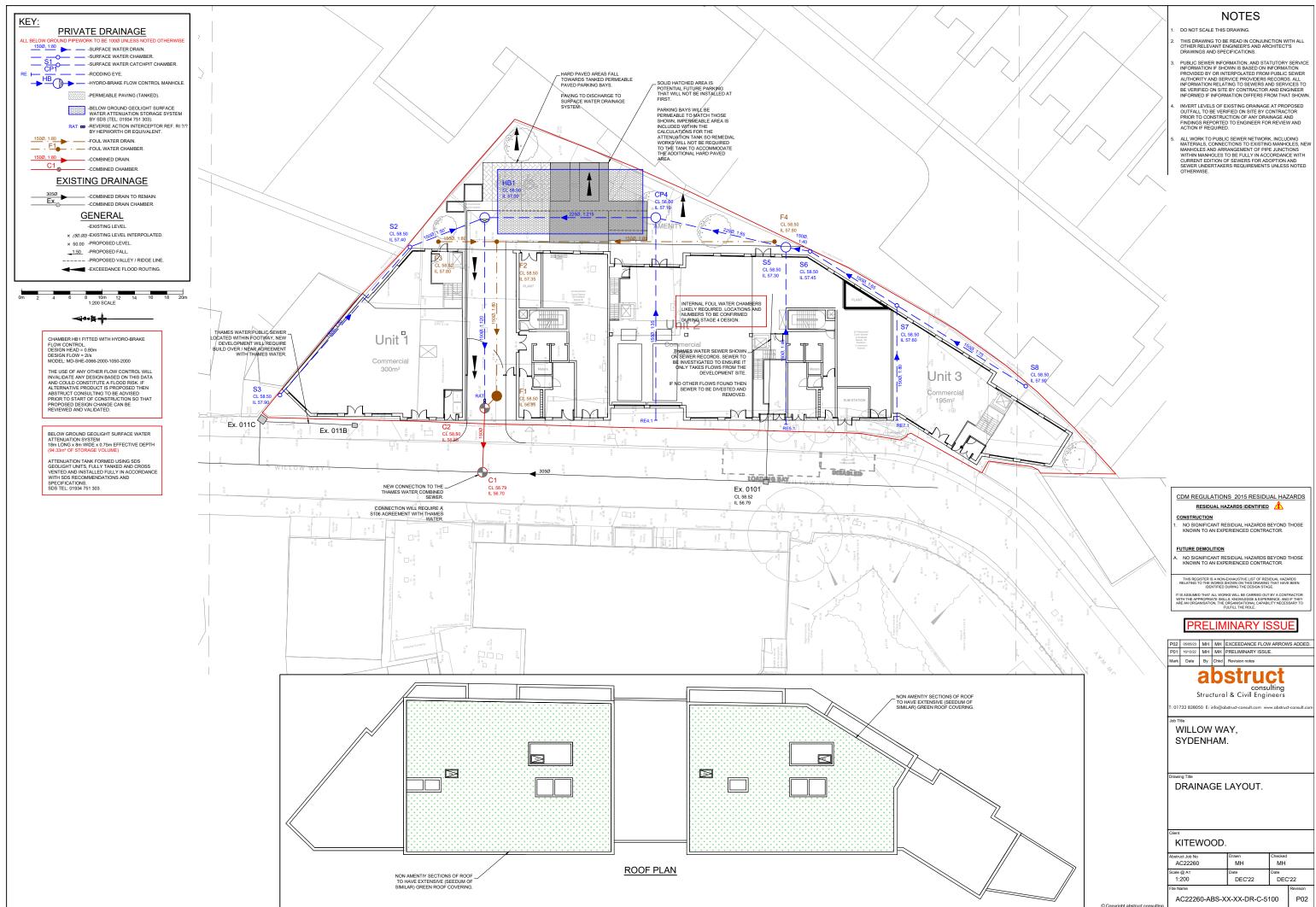
Abstruct Consulting Ltd		Page 10
The Highland Suite	Willow Way, Sydenham	
Great Hollanden Business Centre	AC22260-ABS-XX-XX-CA-C-5502	
Sevenoaks Kent TN15 OSQ	P01	Mirro
Date 16/12/2022	Designed by MH	Drainage
File AC22260-ABS-XX-XX-CA-C	Checked by	Diamage
Causeway	Network 2020.1.3	I

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)		Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S8	-0.101	0.000	0.23			4.4	OK	
S2.000	RE7.1	-0.104	0.000	0.21			3.8	OK	
S1.001	s7	-0.064	0.000	0.62			12.6	OK	
S1.002	S6	-0.040	0.000	0.87			14.9	OK	
S3.000	RE5.1	-0.094	0.000	0.30			7.9	OK	
S1.003	S5	-0.074	0.000	0.54			27.3	OK	
S4.000	RE4.1	-0.095	0.000	0.29			8.3	OK	
S1.004	CP4	0.079	0.000	0.29			9.3	SURCHARGED	
S5.000	S3	-0.084	0.000	0.39			9.5	OK	
S5.001	S2	-0.053	0.000	0.74			16.5	OK	
S1.005	HB1	0.251	0.000	0.13		224	2.0	SURCHARGED	
S6.000	F4	-0.150	0.000	0.00			0.0	OK	
S7.000	F3	-0.150	0.000	0.00			0.0	OK	
S6.001	F2	-0.150	0.000	0.00			0.0	OK	
S6.002	F1	-0.150	0.000	0.00			0.0	OK	
S1.006	C1	-0.116	0.000	0.11			2.0	OK	

Abstru	ict Co	nsult	ing I	Ltd						Page	11
The Hi	ghlan	d Sui	te		1	Willow	Way, S	Sydenham			
Great	Holla	nden	Busir	ness Ce				- XX-XX-CA-	C-5502		
Sevenc	aks	Kent.	TN15	5 0.SO	1	P01				Mic	
Date 1					-	Designe	d hu i	лц		— Mici	
			VV V			-	_	*111		Drai	nage
		U-ABS	-XX-2	XX-CA-C		Checked					
Causew	yay				1	Networ]	c 2020	.1.3			
100	year F	Returr	n Per	iod Su	mmary c	of Crit	ical F	<u>Results b</u>	<u>y Maximun</u>	n Level	(Rank
) for			_		
						lation					
		Areal						al Flow -			
		Hot			mins) (mm)		MADL	Factor *	10m³/na St et Coeffie		
Ma		Headlo	oss Co	eff (Gl		500 Flo	w per P	erson per			
		Numb	or of	Tabut L	ludrogram	obe 0 N	imbor o	f Storage S	tructuros	1	
		Nu	mber d	of Onlir	ne Contro	ols 1 Nu	umber o:	f Time/Area f Real Time	n Diagrams	0	
					Synthet	ic Rain:	fall Def	ails			
			Raint	fall Mod		IC Naill		Ratio H	R 0.441		
				Regi	on Engla	and and	Wales (Cv (Summer)	0.750		
			ľ	45-60 (n	ım)	2	20.000	Cv (Winter)	0.840		
	M	a natio	for P	lead Di	l Monoi				-		
	M	largin	IOT F.		sk Warnin alvsis T	-	2 5 50	cond Increm		300.0	
				Alle	-	Status	2.5 500	Long increi	lenit (Exter	OFF	
					DVD	Status				ON	
					Inertia	Status				ON	
				Profile	(s)			S	ummer and	Winter	
		Dur				15, 30,	60, 120), 180, 240			
									720, 960		
	Ret			s) (yea:						30, 100	
		CII	mate	Change	(8)				υ,	0, 40	
											Water
PN	US/MH Name		orm		Climate Change		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Level (m)
					-		2			-	
S1.000 S2.000			inter inter	100 100		100/15 100/15					58.222
S2.000	RE/.1 S7		inter inter	100		100/15					58.189
s1.001			inter	100		100/15					58.001
s3.000			inter	100	+40%						57.992
s1.003	S5		inter	100	+40%	100/15	Summer				57.86
S4.000			inter	100	+40%						57.97
S1.004		240 W		100	+40%		Summer				57.79
S5.000	S3	15 W 240 W	inter	100 100	+40%	100/15	C11mm				57.995
s5.001 s1.005		240 W		100	+40% +40%		Summer Winter				57.79
S6.000	F4		ummer	100	+40%	1,00	"TILCET				57.800
s7.000			ummer	100	+40%						57.500
S6.001	F2		ummer	100	+40%						57.35
S6.002	F1		ummer	100	+40%						56.850
S1.006	C1	240 W	inter	100	+40%						56.834
					©1982	2-2020	Innovy	ze			

Abstruct Consulting Ltd	Page 12		
The Highland Suite	Willow Way, Sydenham		
Great Hollanden Business Centre	AC22260-ABS-XX-XX-CA-C-5502		
Sevenoaks Kent TN15 OSQ	P01	Mirro	
Date 16/12/2022	Designed by MH	Drainage	
File AC22260-ABS-XX-XX-CA-C	Checked by	Diamage	
Causeway	Network 2020.1.3		


100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Surcharged Depth (m)		Flow /	Overflow	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
PN S1.000 S2.000 S1.001 S1.002 S3.000 S1.003 S4.000 S1.004 S5.000 S5.001 S1.005	\$8 RE7.1 \$7 \$6 RE5.1 \$5	(m) 0.172 0.163 0.389 0.401 -0.058 0.341 -0.072 0.471 -0.055 0.244 0.643	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.38 0.35 0.94 1.30 0.55 0.83 0.52 0.41 0.71 0.23 0.13	(1/s)	(mins) 473	7.3 6.3 19.2 22.4 14.4 42.1 15.1 13.3 17.3 5.3	FLOOD RISK FLOOD RISK SURCHARGED SURCHARGED	Exceeded
S6.000 S7.000 S6.001 S6.002 S1.006	F4 F3 F2 F1 C1	-0.150 -0.150 -0.150 -0.150 -0.116	0.000 0.000 0.000 0.000 0.000	0.00 0.00 0.00 0.00 0.12			0.0 0.0 0.0 0.0 2.0	OK OK OK OK	

abstruct consulting Structural & Civil Engineers

AC22260-ABS-XX-XX-RP-C-5801

Appendix F – Drainage Layout

